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1 Introduction

Structural vector autoregressions (SVARs) identified with sign and zero restrictions have become

prominent. The fact that identification generally comes from fewer restrictions than in traditional

identification schemes and that any conclusions are robust across the set of SVARs consistent with the

restrictions has made the approach attractive to researchers. Most papers using this approach work

in the Bayesian paradigm.1 In this paper we develop algorithms to independently draw from a family

of conjugate posterior distributions over the structural parameterization conditional on the sign and

zero restrictions. We call this family of conjugate posterior distributions normal-generalized-normal

and we show that it is commonly used in the literature, mainly after the work of Sims and Zha (1998).

We focus on two different parameterizations of SVARs. In addition to the typical structural param-

eterization, SVARs can also be written as the product of the reduced-form parameters and the set of

orthogonal matrices, which we call the orthogonal reduced-form parameterization. Our algorithms will

draw from a conjugate posterior distribution over the orthogonal reduced-form parameterization and

then transform the draws into the structural parameterization. We follow the literature in our choice

of the family of conjugate posterior distributions over the reduced parameters and use the normal-

inverse-Wishart density.2 This choice is common because it is a conjugate family and it is extremely

easy to independently draw from it. Our choice of conjugate posterior over the set of orthogonal ma-

trices conditional on the reduced-form parameters is uniform. This uniform-normal-inverse-Wishart

density over the orthogonal reduced-form parameterization is a recurrent choice after the work of Uh-

lig (2005). We then develop a change of variable theory that allows us to characterize the induced

family of posterior densities over the structural parameterization. This theory shows that a uniform-

normal-inverse-Wishart posterior density over the orthogonal reduced-form parameterization induces

a normal-generalized-normal distributions posterior distribution over the structural parameterization.

The family of normal-generalized-normal densities over the structural parameterization is also con-

jugate and it is often used in the literature. In any case, our algorithms can be easily modified to

consider a more general family of posterior distributions, both conjugate and non-conjugate.

Using our change of variable theory we first show that current algorithms for SVARs identified only

1Exceptions are Moon and Schorfheide (2012), Moon, Schorfheide and Granziera (2013), and Gafarov, Meier and
Montiel Olea (2016a,b). Moon and Schorfheide (2012) analyze the differences between Bayesian probability bands and
frequentist confidence sets in partially identified models. Moon, Schorfheide and Granziera (2013) and Gafarov, Meier
and Montiel Olea (2016a,b) develop methods of constructing error bands for impulse response functions of sign-restricted
SVARs that are valid from a frequentist perspective.

2Alternatively, one could use a normal-Wishart density.
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by sign restrictions, as described by Rubio-Ramı́rez, Waggoner and Zha (2010), are in fact making in-

dependent draws from the normal-generalized-normal distribution over the structural parameterization

conditional on the sign restrictions. These algorithms independently draw from the uniform-normal-

inverse-Wishart distribution over the orthogonal reduced-form parameterization, only accepting draws

such that the sign restrictions hold and then transforming the accepted draws into the structural pa-

rameterization. Next, we adapt these algorithms to consider zero restrictions. While the set of all

structural parameters satisfying the sign restrictions will be open in the set of all structural parame-

ters, the set of all structural parameters satisfying the signs and zero restrictions is of measure zero in

the set of all structural parameters. This invalidates the direct use of current algorithms when zero

restrictions are considered. But the set of all structural parameters satisfying both the sign and zero

restrictions is of positive measure in the set of all structural parameters satisfying the zero restrictions.

Hence, we describe an algorithm that makes independent draws from the set of all structural param-

eters satisfying the zero restrictions. The key to this algorithm is that the class of zero restrictions on

the structural parameters maps to linear restrictions on the orthogonal matrices, conditional on the

reduced-form parameters. This algorithm independently draws from normal-inverse-Wishart over the

reduced-form parameters and from the set of orthogonal matrices such that the zero restrictions hold.

Because the zero restrictions define a lower dimensional smooth manifold in the set of all structural

parameters, our change of variable theory allows us to do two things. First, we show that this algo-

rithm does not induce a posterior distribution over the structural parameterization from the family

of normal-generalized-normal distributions conditional on the sign and zero restrictions. Second, we

calculate the induced density and write an importance sampler that independently draws from normal-

generalized-normal distributions over the structural parameterization conditional on the sign and zero

restrictions.

When using sign and zero restrictions, a commonly used algorithm is Mountford and Uhlig’s (2009)

penalty function approach − PFA henceforth. We show that the PFA adds restrictions; hence, identifi-

cation does not solely come from the sign and zero restrictions considered in the identification scheme.

We show the consequences of using the PFA by first replicating the results in Beaudry, Nam and Wang

(2011), and by comparing them with the results that a researcher would obtain if our importance sam-

pler were to be used instead. The aim of Beaudry, Nam and Wang (2011) is to provide new evidence

on the relevance of optimism shocks as an important driver of macroeconomic fluctuations by means of

an SVAR identified by imposing a sign restriction on the impact response of stock prices to optimism

shocks and a zero restriction on the contemporaneous response of TFP to these shocks. Based on
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the results obtained with the PFA, Beaudry, Nam and Wang (2011) conclude that optimism shocks

are clearly important for explaining standard business cycle type phenomena because they increase

consumption and hours. Once our importance sampler is used, the identified optimism shocks do

not increase consumption and hours and, hence, there is little evidence supporting the assertion that

optimism shocks are important for business cycles. The results reported in Beaudry, Nam and Wang

(2011) are significantly affected by the additional restrictions imposed by the PFA.

We are not the first ones to criticize the PFA. There is an existing literature that already does

exactly that. For example, Caldara and Kamps (2012) and Binning (2013) share some of our concerns,

while adding others, about the PFA. In related and very original work, Giacomini and Kitawaga (2015)

are also concerned with the choice of the priors densities in SVARs identified using sign and zero

restrictions. They also work on the orthogonal reduced-form parameterization and propose a method

for conducting posterior inference on IRFs that is robust to the choice of priors densities. We see our

paper as sympathetic to their concern about the choice of priors densities.

Finally, we have to highlight Baumeister and Hamilton (2015). This paper directly draws in struc-

tural parameterization. This is a very interesting and novel approach since the rest of the literature

(including us) works in the orthogonal reduced-form parameterization. While working in the struc-

tural parameterization has clear advantages, mainly being able to define priors densities directly on

economically interpretable structural parameters, this approach uses a Metropolis-Hastings algorithm

to make the draws. Hence this approach is inefficient compared with ours and harder to implement in

larger models.

We wish to state that the aim of this paper is neither to dispute nor to challenge SVARs identi-

fied with sign and zero restrictions. In fact, our methodology preserves the virtues of the pure sign

restriction approach developed in the work of Faust (1998), Canova and Nicoló (2002), Uhlig (2005),

and Rubio-Ramı́rez, Waggoner and Zha (2010).

2 Pitfalls of the Penalty Function Approach

Beaudry, Nam and Wang (2011) analyze the relevance of optimism shocks as a driver of macroeconomic

fluctuations using SVARs identified with sign and zero restrictions. More details about their work will

be given in Section 8. At this point it suffices to say that in their most basic SVAR, Beaudry,

Nam and Wang (2011) use data on total factor productivity (TFP), stock prices, consumption, the

real federal funds rate, and hours worked. Their identification scheme defines optimism shocks as
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positively affecting stock prices but not affecting TFP contemporaneously and they use the PFA to

implement it. Beaudry, Nam and Wang (2011) also claim that identification solely comes from these

two restrictions.

Figure 1: IRFs to a one standard deviation optimism shock. The solid curves represent the point-wise
posterior medians and the shaded areas represent the 68 percent point-wise probability bands. The figure is
based on 10,000 independent draws obtained using the PFA.

Figure 1 replicates the main result in Beaudry, Nam and Wang (2011). As shown by the narrow

68 percent point-wise probability bands of their IRFs, Beaudry, Nam and Wang (2011) obtain the

result that consumption and hours worked respond positively and strongly to optimism shocks. If the

IRFs shown in Figure 1 were the IRFs to optimism shocks solely identified using the two restrictions

described above, they would clearly endorse the view of those who think that optimism shocks are

relevant for business cycle fluctuations. But this is not the case. When the PFA is used, identification

does not solely come from the identifying restrictions; as we show below, the PFA introduces restrictions

in addition to the ones specified in the identification scheme. In Section 8 we will show that if our

importance sampler is used instead, the results do not back as strongly the view that optimism shocks

are relevant for business cycle fluctuations. Hence, we can conclude that the results reported in Figure

1 are mostly driven by the additional restrictions imposed by the PFA.
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3 Our Methodology

This section first describes the SVAR. It then discusses the identification problem and the class of

sign and zero restrictions considered in this paper. Next, it introduces the structural and the or-

thogonal reduced-form parameterization. Our algorithms will draw from the orthogonal reduced-form

parameterization and then transform the draws to the structural parameterization. Hence, we must

be able to transform the prior and posterior distributions from one parameterization to another. The

necessary theory to accomplish this is also described in this section. The usual change of variable

theorem is not sufficient because we are not transforming between open subsets of Euclidean spaces of

the same dimension, but instead are transforming between smooth manifolds of the same dimension.

We will briefly outline the volume measure on smooth manifolds and state the appropriate generaliza-

tions of the change of variable theorem. Finally, we explicitly specify the conjugate prior distributions

that will be used. While the algorithms developed here can be applied to other non-conjugate prior

distributions, they are most efficient in the conjugate case.

3.1 The Model

Consider the SVAR with the general form, as in Rubio-Ramı́rez, Waggoner and Zha (2010)

y′
tA0 =

p∑
ℓ=1

y′
t−ℓAℓ + c+ ε′t for 1 ≤ t ≤ T, (1)

where yt is an n×1 vector of endogenous variables, εt is an n×1 vector of exogenous structural shocks,

Aℓ is an n×n matrix of parameters for 0 ≤ ℓ ≤ p with A0 invertible, c is a 1×n vector of parameters,

p is the lag length, and T is the sample size. The vector εt, conditional on past information and the

initial conditions y0, ...,y1−p, is Gaussian with mean zero and covariance matrix In, the n×n identity

matrix. The model described in Equation (1) can be compactly written as

y′
tA0 = x′

tA+ + ε′t for 1 ≤ t ≤ T, (2)

where A′
+ =

[
A′

1 · · · A′
p c′

]
and x′

t =
[
y′
t−1 · · · y′

t−p 1
]
for 1 ≤ t ≤ T . The dimension of A+ is

m× n, where m = np+ 1. The reduced-form representation implied by Equation (2) is

y′
t = x′

tB+ u′
t for 1 ≤ t ≤ T, (3)
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where B = A+A
−1
0 , u′

t = ε′tA
−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)

−1. The matrices B and Σ are the

reduced-form parameters, while A0 and A+ are the structural parameters.

3.2 The Identification Problem and Sign and Zero Restrictions

Following Rothenberg (1971), the parameters (A0,A+) and (Ã0, Ã+) are observationally equivalent

if and only if they imply the same distribution of yt for all t. For the linear Gaussian models of the

type studied in this paper, this statement is equivalent to saying that (A0,A+) and (Ã0, Ã+) are

observationally equivalent if and only if they have the same reduced-form representation. This implies

that the structural parameters (A0,A+) and (Ã0, Ã+) are observationally equivalent if and only if

A0 = Ã0Q and A+ = Ã+Q for some Q ∈ O(n), which is the set of all n× n orthogonal matrices.

To solve the identification problem, one often imposes sign and/or zero restrictions on either the

structural parameters or some function of the structural parameters, like the IRFs. For instance, the

element in row i and column j of (A−1
0 )′ is the contemporaneous response of the ith variable to the

jth shock.3 Restricting this element to be zero would imply that the ith variable does not respond

contemporaneously to the jth shock. Restricting this element to be positive would imply that the

initial response of the ith variable to the jth shock is positive. The theory and simulation techniques

that we develop apply to sign and zero restrictions on any function F(A0,A+) from the structural

parameters to the space of r × n matrices that satisfies the condition F(A0Q,A+Q) = F(A0,A+)Q,

for every Q ∈ O(n), which is true for IRFs.4

To set the notation, let Sj be a sj × r matrix of full row rank, where 0 ≤ sj, and let Zj be a zj × r

matrix of full row rank, where 0 ≤ zj ≤ n − j for 1 ≤ j ≤ n. The Sj will define the sign restrictions

on the jth structural shock and the Zj will define the zero restrictions on the jth structural shock for

1 ≤ j ≤ n. In particular, we assume that SjF(A0,A+)ej > 0 and ZjF(A0,A+)ej = 0 for 1 ≤ j ≤ n,

where ej is the jth column of In.

In Rubio-Ramı́rez, Waggoner and Zha (2010), sufficient conditions for identification are established.

The sufficient condition for identification is that there must be an ordering of the structural shocks so

that there are at least n− j zero restrictions on the jth structural shock, for 1 ≤ j ≤ n. In addition,

3More generally, the IRF of the ith variable to the jth structural shock at horizon k is the element in row i and column

j of the matrix Lk(A0,A+), where L0(A0,A+) =
(
A−1

0

)′
and Lk(A0,A+) =

∑min{k,p}
ℓ=1

(
AℓA

−1
0

)′
Lk−ℓ(A0,A+), for

k > 0. An induction argument on k shows that Lk (A0Q,A+Q) = Lk (A0,A+)Q, for all k and Q ∈ O(n).
4In addition, a regularity condition on F is needed. For instance, it suffices to assume that F is differentiable and

that its derivative is of full row rank.
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there must be at least one sign restriction on the impulse responses to each structural shock.5 The

necessary order condition for identification, Rothenberg (1971), is that the number of zero restrictions

is greater than or equal to n(n − 1)/2. In this paper, we will have fewer than n − j zero restrictions

on the jth structural shock. This means that no matter how many sign restrictions are imposed,

identification will only be a set identification. However, if there are enough sign restrictions, then the

identified sets will be small and it will be possible to draw meaningful economic conclusions.

3.3 The Orthogonal Reduced-Form Parameterization

Equation (2) represents the SVAR in terms of the structural parameterization, which is characterized

by A0 and A+. Given the discussion in Section 3.2, the SVAR can alternatively be written in what

we call the orthogonal reduced-form parameterization. This parameterization is characterized by the

reduced-form parameters B and Σ together with an orthogonal matrix Q and is given by the following

equation

y′
t = x′

tB+ ε′tQ
′h(Σ) for 1 ≤ t ≤ T, (4)

where the n×nmatrix h(Σ) is any decomposition of the covariance matrixΣ satisfying h(Σ)′h(Σ) = Σ.

We will take h to be the Cholesky decomposition, though any differentiable decomposition would do.

As we will see, the orthogonal reduced-form parameterization is convenient for drawing. However,

the researcher will be interested in making draws from the structural parameterization; thus, we will

need to transform (B,Σ,Q) into (A0,A+). Given Equation (2), Equation (4), and the decomposition

h, we can define a mapping between (A0,A+) and (B,Σ,Q) by

fh(A0,A+) = (A+A
−1
0︸ ︷︷ ︸

B

, (A0A
′
0)

−1︸ ︷︷ ︸
Σ

, h((A0A
′
0)

−1)A0︸ ︷︷ ︸
Q

).

By a direct computation, it is easy to see that h((A0A
′
0)

−1)A0 is an orthogonal matrix. The function

fh is invertible, with inverse defined by

f−1
h (B,Σ,Q) = (h(Σ)−1Q︸ ︷︷ ︸

A0

,Bh(Σ)−1Q︸ ︷︷ ︸
A+

).

The orthogonal reduced-form parameterization makes clear how the structural parameters depend

5Often, one is only interested in partial identification. If there is an ordering such that there are at least n− j zero
restrictions and at least one sign restriction on the impulse responses to the jth structural shock for 1 ≤ j ≤ k, then the
first k structural shocks under this ordering will be identified.
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on the reduced-form parameters and orthogonal matrices. Given the reduced-form parameters and

a decomposition h, one can consider each value of Q ∈ O(n) as a particular choice of structural

parameters.

3.4 Change of Variable Theorems

As mentioned above, the researcher will be interested in making draws from the structural parameter-

ization but it is simpler to make draws from the reduced-form parameterization and then transform

them into the structural parameterization using f−1
h . Hence, it is crucial to understand how to trans-

form densities between these two representations. In this section, we discuss the change of variable

theorems that will allow us do exactly that. While we will apply these theorems to the structural

parameterization, they can be used with any parameterization as long as the mapping between the

orthogonal reduced-form parameterization and the desired parameterization can be explicitly com-

puted.6 As we will see, there are differences between transforming densities when there are only sign

restrictions as opposed to when there are also zero restrictions. Details and proofs, or references to

proofs, will be relegated to Appendix A. The usual change of variable theorem can be stated as follows.

Theorem 1. Let U ⊂ Rb be an open set and let γ : U → Rb be a one-to-one and continuously

differentiable function. If A ⊂ γ(U) and λ : A → R is an integrable function, then

∫
A

λ(v)dv =

∫
γ−1(A)

λ(γ(u))| det(Dγ(u))|du. (5)

Proof. See Appendix A.1.

Note that the integral on each side of Equation (5) is with respect to Lebesgue measure over Rb.

The term vγ(u) = | det(Dγ(u))| is the volume element of γ at u, where Dγ(u) denotes the derivative

of γ evaluated at u. Note that Dγ(u) is a b× b matrix. When the range of γ is not Rb, but is instead

a b-dimensional smooth manifold in Ra, one has the following change of variable theorem.7

Theorem 2. Let U ⊂ Rb be an open set, let V ⊂ Ra be a b-dimensional smooth manifold, and let

γ : U → V be a one-to-one and continuously differentiable function. If A ⊂ γ(U) and λ : A → R is an

6In particular, it is easy to replicate the theory and algorithms of this paper for the IRF parameterization. This
parameterization is characterized by the IRFs of the SVAR and the details are in Appendix B.

7A b-dimensional smooth manifold in Ra is a subset V of Ra that admits a local b-dimensional coordinate system in
V. This means that for each v ∈ V, there is an open set U ⊂ Rb and a continuously differentiable function γ : U → V
such that γ(U) is open in V, Dγ(u) is of rank b for every u ∈ U , the inverse of γ exists and is continuous, and v ∈ γ(U).
The function γ : U → V is a coordinate system in V about v and γ(U) is a coordinate patch in V about v.
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integrable function, then

∫
A

λ(v)dv =

∫
γ−1(A)

λ(γ(u))| det(Dγ(u)′Dγ(u))|
1
2du. (6)

Proof. See Appendix A.1.

The integral on the right hand side of Equation (6) is with respect to Lebesgue measure over Rb,

but the integral on the left hand side cannot be with respect to Lebesgue measure in Ra if a > b

because V is of measure zero in Ra. However, the smooth manifold structure of V , together with

Lebesgue measure over Rb, uniquely defines the volume of a set in V , which determines a well-defined

measure over V that we call the volume measure. More formally, if γ : U → V is a coordinate system,

A ⊂ γ(U), γ−1(A) is Lebesgue measurable over Rb, and λ(v) = 1 for every v ∈ A, then Equation (6)

can be taken as the definition of the volume of A. It can be shown that this definition is independent

of the choice of coordinate system and can be extended to sets not contained in a single coordinate

patch. The integral on the left hand side of Equation (6) is with respect to the volume measure over

V .

The matrix Dγ(u) is a × b, so that Dγ(u)′Dγ(u) is a b × b matrix. As before, the term vγ(u) =

| det(Dγ(u)′Dγ(u))| 12 is the volume element of γ at u. When a = b, Theorem 2 reduces to Theorem 1.

As we will see below, Theorem 2 will be used to transform densities when only sign restrictions are

considered. The final generalization of the change of variable theorem is given below, which will be of

use when there are zero restrictions.

Theorem 3. Let U ⊂ Rb be an open set, let V ⊂ Ra be a d-dimensional smooth manifold, and let

the functions γ : U → Ra and β : U → Rb−d be continuously differentiable with Dβ(u) of rank b-d

whenever β(u) = 0. Define U = β−1({0}) and suppose that γ(U) ⊂ V and γ is one-to-one on U . If

A ⊂ γ(U) and λ : A → R is an integrable function, then

∫
A

λ(v)dv =

∫
γ−1(A)∩U

λ(γ(u)) |det(N′
u ·Dγ(u)′ ·Dγ(u) ·Nu)|

1
2 du, (7)

where Nu is any b× d matrix whose columns form an orthonormal basis for the null space of Dβ(u).

Proof. See Appendix A.1.

The conditions on the function β, which will be used to describe the zero restrictions, imply that U

is a d-dimensional smooth manifold in Rb and the integral on the right hand side of Equation (7) is with
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respect to the volume measure over U . By assumption, γ(U) is contained in the d-dimensional smooth

manifold V and the integral on the left hand side of Equation (7) is with respect to the volume measure

over V . The matrix Dγ(u) is a× b, so that N′
u ·Dγ(u)′ ·Dγ(u) ·Nu is d× d. The matrix Nu is not

unique. If Nu and Ñu are two matrices whose columns form an orthonormal basis for the null space of

Dβ(u), then there exists a d×d orthogonal matrix X such that Nu = ÑuX. Because the determinant

of a product of square matrices is equal to the product of the determinants and the determinant of a

orthogonal matrix is plus or minus one, the value of the expression |det(N′
u ·Dγ(u)′ ·Dγ(u) ·Nu)| is

independent of the choice of Nu. As before, the term |det(N′
u ·Dγ(u)′ ·Dγ(u) ·Nu)|

1
2 is the volume

element of γ restricted to U at u. To emphasize the importance of the restriction, we denote this

volume element by vγ|U (u).

Both Theorems 2 and 3 will be used in subsequent sections in the following way. We will have a

distribution over V whose density with respect to the volume measure over V evaluated at v is p(v). A

draw v from this distribution can be uniquely transformed to u = γ−1(v) and we will want to compute

the density over the u.8 When there are only sign restrictions, Theorem 2 will be applicable and the

density of u will be p(γ(u))vγ(u) with respect to Lebesgue measure over Rb. When there are zero

restrictions given by β, Theorem 3 will be applicable and the density of u will be p(γ(u))vγ|U (u) with

respect to the volume measure over U . When applying these theorems, v will be an orthogonal reduced-

form parameter and u will be a structural parameter. If the researcher is using a parameterization

other than the structural parameterization, u will belong to it instead.

In this section we have discussed change of variable formulas for integration over smooth manifolds

with respect to the volume measure. In order to fix ideas, it is useful to relate the volume measure

over commonly used smooth manifolds to other measures that could be defined over the same smooth

manifolds. Some of these examples will be used later in the paper. First, an open subset U ⊂ Rb is a

b-dimensional smooth manifold in Rb. The volume measure over U is identical to Lebesgue measure

over Rb in this case.

Second, an open subset of a b-dimensional linear subspace of Ra is a b-dimensional smooth manifold

in Ra and so there is a well-defined volume measure over these sets. For instance, the set of all n× n

symmetric and positive definite matrices is a n(n+1)
2

-dimensional smooth manifold in Rn2
. If V ⊂ Ra is

a b-dimensional linear subspace, we know that there exists a linear mapping γ from Rb onto V . Because

γ is linear, the volume element is constant. Thus, by Theorem 2, the volume of A ⊂ V will be the

8It must be the case that the support of p(v) is contained in γ(U) when applying Theorem 2 and contained in γ(U)
when applying Theorem 3. This ensures that u = γ−1(v) exists and is unique.
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Lebesgue measure of γ−1(A) ⊂ Rb times the constant value of the volume element. Often the constant

volume element is ignored, in which case the measure will not be the volume measure. Because of the

simple nature of linear subspaces this generally causes no problems; however, in this paper we will

always use the volume measure and thus the constant volume element will always be explicitly taken

into account.

Third, the set of all n× n orthogonal matrices, O(n), is a n(n−1)
2

-dimensional smooth manifold in

Rn2
. In addition to the volume measure over O(n), there are Haar measures defined over O(n), which

is any measure that is invariant to multiplication by orthogonal matrices. Any two Haar measures

differ only by a constant scale factor. Because volume is invariant to rigid transformations, which

multiplication by an orthogonal matrix is, the volume measure over O(n) is a Haar measure.

Throughout the rest of the paper all densities will be with respect to the volume measure, even

though we will not explicitly state it. Sometimes, for instance when there are no zero restrictions and

we are working with A0, A+, or B, the volume measure will be Lebesgue measure. However, when

we are working with symmetric and positive definite matrices, orthogonal matrices, or when there are

zero restrictions, the volume measure will not be Lebesgue.

3.5 Conjugate Priors and Posteriors

While the techniques developed here will work with any prior distribution, they are most efficient

when used with prior distributions that belong to a certain family of conjugate distributions.9 For

the reduced-form representation in Equation (3), the normal-inverse-Wishart family of distributions

is conjugate.10 If the prior distribution over the reduced-form parameters is NIW (ν̄, Φ̄, Ψ̄, Ω̄), then

9A family of distributions is conjugate if the prior distribution being a member of this family implies that the
posterior distribution is a member of the family. Some authors also require the likelihood to be a member of the family.

10A normal-inverse-Wishart distribution over the reduced-form parameters is characterized by four parameters: a
scalar ν ≥ n, an n × n symmetric and positive definite matrix Φ, an m × n matrix Ψ, and an m ×m symmetric and
positive definite matrix Ω. We denote this distribution by NIW (ν,Φ,Ψ,Ω) and its density by NIW(ν,Φ,Ψ,Ω)(B,Σ).
Furthermore,

NIW(ν,Φ,Ψ,Ω)(B,Σ) ∝ | det(Σ)|−
ν+n+1

2 e−
1
2 tr(ΦΣ−1)︸ ︷︷ ︸

inverse-Wishart

|det(Σ)|−m
2 e−

1
2 vec(B−Ψ)′(Σ⊗Ω)−1 vec(B−Ψ)︸ ︷︷ ︸

conditionally normal

.
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the posterior distribution over the reduced-form parameters is NIW (ν̃, Φ̃, Ψ̃, Ω̃), where

ν̃ = T + ν̄,

Ω̃ = (X′X+ Ω̄−1)−1,

Ψ̃ = Ω̃(X′Y + Ω̄−1Ψ̄),

Φ̃ = Y′Y + Φ̄+ Ψ̄′Ω̄−1Ψ̄− Ψ̃′Ω̃−1Ψ̃,

for Y = [y1 · · · yT ]
′ and X = [x1 · · · xT ]

′.

If π(Q|B,Σ) is any conditional density over O(n), then prior densities of the form

NIW(ν̄,Φ̄,Ψ̄,Ω̄)(B,Σ)π(Q|B,Σ) over the orthogonal reduced-form parameterization will be conjugate.

We will take π(Q|B,Σ) to be the uniform density. We make this choice for three reasons. First, as we

will see below priors densities over the orthogonal reduced-form parameterization of this form induce

standard prior densities over the structural parameterization. Second, prior and posterior densities

over the orthogonal reduced-form parameterization of this form will be very easy to independently

draw from. Third, the likelihood is of this form and so this family of densities will be conjugate

in even the stronger sense. We call this the uniform-normal-inverse-Wishart distribution over the

orthogonal reduced-form parameterization; denote it by UNIW (ν,Φ,Ψ,Ω), and denote its density

over the orthogonal reduced-form parameterization by UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q).11

Densities over the orthogonal reduced-form parameterization induce densities over the structural

parameterization via the function fh. If π(B,Σ,Q) is any density over the orthogonal reduced-form

parameterization, then by Theorem 2, the induced density over the structural parameterization will

be

π(fh(A0,A+))vfh(A0,A+).

It is easy to verify that the hypotheses of Theorem 2 are satisfied and so Theorem 2 is applicable.

The volume element could be computed numerically, but for any function fh it can be computed

analytically using Proposition 1, described below. The reader should notice that the volume element

does not depend on the choice of h.

11It is the case that UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q) = NIW(ν,Φ,Ψ,Ω)(B,Σ)/
∫
O(n)

1dQ. Because O(n) is compact,∫
O(n)

1dQ is finite.
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Proposition 1. The volume element of fh at (A0,A+) is

vfh(A0,A+) = 2
n(n+1)

2 | det(A0)|−(2n+m+1).

Proof. See Appendix A.2.

Using Theorem 2, Proposition 1, and the definition of the normal-inverse-Wishart distribution, the

density over the structural parameterization induced by the uniform-normal-inverse-Wishart density

over the orthogonal reduced-form parameterization is

NGN(ν,Φ,Ψ,Ω)(A0,A+) = UNIW(ν,Φ,Ψ,Ω)(fh(A0,A+))vfh(A0,A+)

∝ | det(A0)|ν−ne−
1
2
vec(A0)′(In⊗Φ) vec(A0)︸ ︷︷ ︸

generalized-normal

e−
1
2
vec(A+−ΨA0)′(In⊗Ω)−1 vec(A+−ΨA0)︸ ︷︷ ︸

conditionally normal

. (8)

Thus, if we independently draw (B,Σ,Q) from a uniform-normal-inverse-Wishart distribution over

the orthogonal reduced-form parameterization with parameters (ν,Φ,Ψ,Ω) and then transform the

draws to (A0,A+) using f−1
h we are in fact independently drawing from the density over the structural

parameterization represented in Equation (8). We call this a normal-generalized-normal distribution

over the structural parameterization; denote it by NGN(ν,Φ,Ψ,Ω), and denote its density over the

structural parameterization by NGN(ν,Φ,Ψ,Ω)(A0,A+). When ν = n the marginal distribution of

vec(A0) is normal with mean zero and variance In ⊗Φ−1. In general we call it a generalized-normal

distribution. The distribution of vec(A+), conditional on A0, is normal with mean vec(ΨA0) and

variance In⊗Ω. Because the uniform-normal-inverse-Wishart family of distributions is conjugate over

the orthogonal reduced-form parameterization, the normal-generalized-normal family of distributions

over the structural parameterization is conjugate. This is because if the prior and posterior densities

have the same functional form in one parameterization, then, because the volume element will be the

same for the prior and posterior densities, the induced prior and posterior densities in the other pa-

rameterization will also have the same functional form. Normal-generalized-normal prior distributions

over the structural parameterization are often used in the literature, particularly with ν = n. For

instance, any prior distribution over the structural parameterization that can be implemented through

dummy observations will be of this form. Thus, the Sims-Zha prior distribution over the structural

parameterization is also of this form.

If the researcher needs to work with a parameterization other than the structural parameteriza-
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tion, an analog to Equation (8) can easily be obtained as long as the mapping between the orthogonal

reduced-form parameterization and the desired parameterization can be explicitly computed. However,

it may not be possible to derive an analytical expression for the volume element as in Proposition 1,

but Theorem 2 can always be used to numerically compute the density over the desired parame-

terization induced by the uniform-normal-inverse-Wishart density over the orthogonal reduced-form

parameterization.

It is very easy to independently draw from the uniform-normal-inverse-Wishart distribution. Mat-

lab, Mathematica, and R have routines for making independent draws from both the inverse-Wishart

distribution and the normal distribution. There are efficient algorithms for making independent draws

from the uniform distribution over O(n). Faust (1998), Canova and Nicoló (2002), Uhlig (2005), and

Rubio-Ramı́rez, Waggoner and Zha (2010) all propose algorithms to do this. The algorithm of Rubio-

Ramı́rez, Waggoner and Zha (2010) is the most efficient, particularly for larger SVAR systems (e.g.,

n > 4).12 Rubio-Ramı́rez, Waggoner and Zha’s (2010) results are based on the following theorem.

Theorem 4. Let X be an n × n random matrix with each element having an independent standard

normal distribution. Let X = QR be the QR decomposition of X with the diagonal of R normalized

to be positive. The random matrix Q is orthogonal and is a draw from the uniform distribution over

O(n).

Proof. The proof follows directly from Stewart (1980).

In this section we have explicitly derived expressions for prior densities over the structural parame-

terization that are conjugate and are induced by a uniform-normal-inverse-Wishart prior density over

the orthogonal reduced-form parameterization. Furthermore, they are a family of prior densities often

used in the literature.

4 Sign Restrictions

Because F is continuous, the set of all structural parameters satisfying the sign restrictions will be

open in the set of all structural parameters. An important point to make here is that the condition

F(A0Q,A+Q) = F(A0,A+)Q for every Q ∈ O(n) and the regularity condition are only needed

to implement the algorithms for zero restrictions to be presented later. When only sign restrictions

12See Rubio-Ramı́rez, Waggoner and Zha (2010) for details.
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are considered, it is enough to assume that F is continuous. So, if the sign restrictions are non-

degenerate, so that there is at least one parameter value satisfying the sign restrictions, then the set

of all structural parameters satisfying the sign restrictions will be of positive measure in the set of all

structural parameters. This justifies algorithms of the following type.

Algorithm 1. The following algorithm independently draws from the NGN(ν,Φ,Ψ,Ω) distribution

over the structural parameterization conditional on the sign restrictions.

1. Draw (B,Σ) independently from the NIW (ν,Φ,Ψ,Ω) distribution.

2. Draw Q independently from the uniform distribution over O(n) using Theorem 4.

3. Keep (A0,A+) = f−1
h (B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

Algorithm 1 follows the steps highlighted in Section 3.4: it draws from a distribution over the

orthogonal reduced-form parameterization conditional on the sign restrictions and then transforms

the draws into the structural parameterization using f−1
h . It follows from the discussion in Section 3.5

that the independent draws of (A0,A+) produced by Algorithm 1 will be from the NGN(ν,Φ,Ψ,Ω)

distribution over the structural parameterization conditional on the sign restrictions.

As argued by Baumeister and Hamilton (2015), one should choose the parameterization so that at

least some, if not all, of the parameters have an economic interpretation and the prior distribution over

the selected parameterization should be chosen to reflect what economic theory has to say about those

parameters. Usually, this parameterization will not be the orthogonal reduced-form parameterization

since those parameters, particularly the orthogonal matrix, Q, are hard to interpret from an economic

point of view. Although we agree with Baumeister and Hamilton (2015), we will draw from the

orthogonal reduced-form parameterization because Algorithm 1 is relatively efficient. We will then

transform the orthogonal reduced-form draws back to the desired parameterization. While Algorithm 1

is stated in terms of the structural parameterization, it will work for any parameterization as long as

one can explicitly compute the transformation between the orthogonal reduced-form and the desired

parameterization and the draws produced by this algorithm will be from a conjugate distribution

over the desired parameterization. Clearly, if the desired parameterization is the orthogonal reduced-

form parameterization, the transformation is the identity and Algorithm 1 can be used to produce

independent draws of (B,Σ,Q) from the UNIW (ν,Φ,Ψ,Ω) distribution over the orthogonal reduced-

form parameterization conditional on the sign restrictions.
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Given the desired parameterization, conjugate prior distributions have many useful properties and

if one wants to use a conjugate prior distribution that is induced by a uniform-normal-inverse-Wishart

distribution over the orthogonal reduced-form parameterization, then Algorithm 1 is an efficient tech-

nique for making independent draws from the associated posterior distribution. If one wants to use

a different prior distribution, then Algorithm 1 can still be used as the proposal density in an impor-

tance sampler. Of course the efficiency of this algorithm depends heavily on how close such a prior

distribution is to one that can be induced by a uniform-normal-inverse-Wishart distribution over the

orthogonal reduced-form parameterization. In this paper we work only with conjugate priors distri-

butions over the structural parameterization whose density can be described by Equation (8) as they

are commonly used in the literature, as mentioned in Section 3.5.

5 Zero Restrictions

We now adapt Algorithm 1 to handle the case of sign and zero restrictions. When there are only

sign restrictions, the set of all structural parameters satisfying the restrictions is of positive measure

in the set of all structural parameters. However, when there are both sign and zero restrictions,

the set of all structural parameters satisfying the restrictions is of measure zero in the set of all

structural parameters. This invalidates the direct use of Algorithm 1. But since the set of all structural

parameters satisfying both the sign and zero restrictions is of positive measure in the set of all structural

parameters satisfying the zero restrictions, if we could make independent draws from the set of all

structural parameters satisfying the zero restrictions, then we could apply a variant of Algorithm 1 to

obtain independent draws from the set of all structural parameters satisfying both the sign and zero

restrictions. Algorithm 3, described in this section, does precisely that.

5.1 Zero Restrictions in the Orthogonal Reduced-Form Parameterization

The zero restrictions in the structural parameterization are ZjF(A0,A+)ej = 0 for 1 ≤ j ≤ n. From

the definition of fh and the fact that F(A0Q,A+Q) = F(A0,A+)Q, the zero restrictions in the

orthogonal reduced-form parameterization are

ZjF(f
−1
h (B,Σ,Q))ej = ZjF(f

−1
h (B,Σ, In))Qej = 0 for 1 ≤ j ≤ n.
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This means that the zero restrictions in the orthogonal reduced-form parameterization are really

just linear restrictions on each column of the orthogonal matrix Q, conditional on the reduced-form

parameters (B,Σ). It is this observation that is key to being able to make independent draws from

the set of all structural parameters satisfying the zero restrictions.

Algorithm 2. The following makes independent draws from a distribution over the structural param-

eterization conditional on the zero restrictions.

1. Draw (B,Σ) independently from the NIW (ν,Φ,Ψ,Ω) distribution.

2. For 1 ≤ j ≤ n, draw xj ∈ Rn+1−j−zj independently from a standard normal distribution and set

wj = xj/ ∥ xj ∥.

3. Define Q = [q1 · · · qn] recursively by qj = Kjwj for any matrix Kj whose columns form an

orthonormal basis for the null space of the (j − 1 + zj)× n matrix

Mj =
[
q1 · · · qj−1 (ZjF(f

−1
h (B,Σ, In)))

′
]′
.

4. Set (A0,A+) = f−1
h (B,Σ,Q).

5. Return to Step 1 until the required number of draws has been obtained.

The null space of Mj will be of dimension n + 1 − j − zj if and only if Mj is of full row rank.

Because of the regularity condition on the function F, this will always be case. The details of this

argument appear in Appendix A.3. This is crucial because otherwise the product Kjwj is not defined.

It is also the case that matrix Kj is not unique. If the columns of Kj form an orthonormal basis for

the null space of Mj, then so will the columns of KjX for any X ∈ O(n+ 1− j − zj). The particular

choice of Kj does not make a material difference in the output of Algorithm 2, but in the next section,

when we compute the density over the structural parameterization conditional on the zero restrictions

implied by Algorithm 2, we will need the function Kj = Kj(B,Σ,q1, · · · ,qj−1) to be differentiable

almost everywhere.13 In Appendix A.3 we define Kj so that it is differentiable almost everywhere.

13The function Kj depends on f−1
h (B,Σ, In), and so implicitly requires Σ to be symmetric and positive definite.

Thus the domain of Kj is not an open set in Rn(m+n+j−1). In Appendix A.2, we extend the definition of f−1
h so that the

domain of Kj is an open set and the derivative can be defined. Also, in general, it is not possible to define Kj so that
it is differentiable everywhere. For instance, if there are no restrictions, then the existence of everywhere continuous Kj

would imply that O(n) is topologically equivalent to a product of spheres, which is not true if n ≥ 3.
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Our implementation is quite straight forward and the computation of each Kj requires only a single

QR-decomposition of an n× n invertible matrix.14

By construction, the vector qj is perpendicular to the rows of Mj and ∥ qj ∥=∥ wj ∥= 1. Thus the

matrix Q obtained in Steps 2 and 3 is orthogonal and ZjF(f
−1
h (B,Σ, In))Qej = 0 for 1 ≤ j ≤ n. So,

the algorithm produces independent draws from a distribution over the structural parameterization

conditional on the zero restrictions. In the next subsection, we show how to numerically compute the

density of this distribution using Theorem 3. Unlike the sign restriction only case, the distribution over

the structural parameterization conditional on the zero restrictions implied by Algorithm 2 is not equal

to the NGN(ν,Φ,Ψ,Ω) distribution conditional on the zero restrictions. However, once we know how

to numerically compute its density, we can use Algorithm 2 as a proposal distribution for an impor-

tance sampler to draw from the NGN(ν,Φ,Ψ,Ω) distribution over the structural parameterization

conditional on the zero restrictions.

Because Algorithm 2 will be used as a proposal distribution for an importance sampler for a

distribution whose support is the set of all structural parameters satisfying the zero restrictions, it

must be the case that the support of the distribution implied by Algorithm 2 is also the set of all

structural parameters that satisfy the zero restrictions. To see that this is the case, suppose that

(A0,A+) = f−1
h (B,Σ,Q) satisfies the zero restrictions. To show that these parameters are in the

support of the distribution implied by Algorithm 2, it suffices to show that there exist wj ∈ Rn+1−j−zj ,

for 1 ≤ j ≤ n, such that Step 3 of Algorithm 2 maps to the orthogonal matrix Q. Let wj = K′
jqj.

Since f−1
h (B,Σ,Q) satisfies the zero restrictions and the matrix Q is orthogonal, the jth column of Q

is in the null space of Mj. Thus Kjwj = KjK
′
jqj = qj, because multiplication by KjK

′
j is projection

onto the null space of Mj.

Algorithm 2 also follows the steps highlighted in Section 3.4: it draws from a distribution over the

orthogonal reduced-form parameterization conditional on the zero restrictions and then transforms

the draws into the structural parameterization using f−1
h . As mentioned, in this case the independent

draws of (A0,A+) produced by Algorithm 2 will not be from theNGN(ν,Φ,Ψ,Ω) distribution over the

structural parameterization conditional on the zero restrictions. The density implied by Algorithm 2

will be analyzed below.

14In Matlab, an obvious choice would be to define Kj = null(Mj). While it is surely the case that this choice would
be differentiable almost everywhere, to prove this would require details of the Matlab implementation of this function.
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5.2 The Density Implied by Algorithm 2

In this section we use Theorem 3 to show how to numerically compute the distribution over the

structural parameterization conditional on the zero restrictions implied by Algorithm 2. In order to

do that we need to carefully characterize the mapping implied by the steps in the algorithm. Step 1

of Algorithm 2 independently draws B and Σ from the NIW (ν,Φ,Ψ,Ω) distribution. Step 2 draws

wj from the uniform distribution on the unit sphere in Rn+1−j−zj . This implies that the density over

(B,Σ,w1, · · · ,wn) will be proportional to NIW(ν,Φ,Ψ,Ω)(B,Σ). Step 3 maps (B,Σ,w1, · · · ,wn) to

(B,Σ,Q) and Step 4 maps (B,Σ,Q) to (A0,A+) = f−1
h (B,Σ,Q). It is this composite mapping,

together with Theorem 3, that we will use to compute the density.

It will be shown in Appendix A.3 that there exists an open set V ⊂ Rnm+n2+n2
such that the

functions Kj = Kj(B,Σ,q1, · · · ,qj−1) can be defined so that they are differentiable for all (B,Σ,Q) ∈

V .15 Thus, we can define a differentiable function g : V → Rnm+n2+
∑n

j=1(n+1−j−zj) by

g(B,Σ,Q) = (B,Σ, (K1(B,Σ)′q1, · · · ,Kn(B,Σ,q1, · · · ,qn−1)
′qn)).

On the set of all (B,Σ,Q) ∈ V such that Σ is symmetric and positive definite, Q is orthogonal, and

(A0,A+) = f−1
h (B,Σ,Q) satisfies the zero restrictions, the function g will be one-to-one. The easiest

way to see this is that the function defined by Step 3 of Algorithm 2 is the inverse of g on this restricted

set. The argument is identical to that used to show that the support of the distribution implied by

Algorithm 2 is the set of all structural parameters satisfying the zero restrictions. Let U = f−1
h (V ),

which will be an open set in the set of all structural parameters. The composite function g ◦ fh, when

restricted to the (A0,A+) ∈ U that satisfy the zero restrictions, will be the inverse of the function

defined by Steps 3 and 4 of Algorithm 2. If Z denotes the set of all structural parameters that satisfy

the zero restrictions, then by Theorem 3 the density over the structural parameterization conditional

on the zero restrictions implied by Algorithm 2 is proportional to NIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|Z (A0,A+),

where (B,Σ,Q) = fh(A0,A+). It is easy to verify that the hypotheses of Theorem 3 are satisfied. The

only difficulty is to check whether the derivative of the function describing the zero restrictions, which

is given by β(A0,A+) = (ZjF(A0,A+)ej)
n
j=1, has full row rank. This will follow from the regularity

conditions on the function F, the details of which are in Appendix A.3.

Finally, it must be the case that any structural parameter satisfying the zero restrictions must

15Here, we are implicitly considering Kj to be a function of Q, even though it actually only depends on the first j−1
columns of Q.
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almost surely be in the set U . If this were not the case, then there would be a set of positive measure

for which the techniques of the section would not apply. As with the other details in this section, this

will be shown in Appendix A.3.

5.3 An Importance Sampler

The results of Sections 5.1 and 5.2 show that, first, Algorithm 2 generates independent draws from a

distribution over the structural parameterization conditional on the zero restrictions that is not equal

to the NGN(ν,Φ,Ψ,Ω) distribution conditional on the zero restrictions and, second, we know how to

to numerically compute this density. Thus, they justify the following importance sampler algorithm

to independently draw from the NGN(ν,Φ,Ψ,Ω) distribution over the structural parameterization

conditional on the sign and zero restrictions.

Algorithm 3. The following algorithm independently draws from the NGN(ν,Φ,Ψ,Ω) distribution

over the structural parameterization conditional on the sign and zero restrictions.

1. Use Algorithm 2 to independently draw (A0,A+).

2. If (A0,A+) satisfies the sign restrictions, then set its importance weight to

NGN(ν,Φ,Ψ,Ω)(A0,A+)

NIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|Z (A0,A+)
∝ | det(A0)|−(2n+m+1)

v(g◦fh)|Z (A0,A+)
,

where (B,Σ,Q) = fh(A0,A+) and Z denotes the set of all structural parameters that satisfy the

zero restrictions. Otherwise, set its importance weight to zero.

3. Return to Step 1 until the required number of draws has been obtained.

As was the case with Algorithms 1 and 2, Algorithm 3 follows the steps highlighted in Section 3.4:

it draws from a distribution over the orthogonal reduced-form parameterization conditional on the sign

and zero restrictions and then transforms the draws into the structural parameterization. It follows

from the discussion in Section 5.2 that the independent draws of (A0,A+) produced by Algorithm 3

will be from the NGN(ν,Φ,Ψ,Ω) distribution over the structural parameterization conditional on

the sign and zero restrictions.

Algorithm 3 inherits the key features of Algorithm 1. First, being able to independently draw

(A0,A+) from the normal-generalized-normal family of distributions over the structural parameteri-

zation conditional on the sign and zero restrictions means that we can use Algorithm 3 to independently
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draw from the posterior distribution over the structural parameterization conditional on the sign and

zero restrictions for any conjugate prior distribution from this family.

Second, Algorithm 3 is stated in terms of the structural parameterization, but it will work for any

parameterization as long as one can explicitly compute the transformation between the orthogonal

reduced-form parameterization and the desired parameterization. Because Algorithm 3 first draws

from the uniform-normal-inverse-Wishart distribution, which is conjugate over the orthogonal reduced-

form parameterization, the draws produced by this algorithm will be from a conjugate distribution

over the desired parameterization.

Finally, Algorithm 3 is very efficient if one uses a conjugate prior distribution over the desired

parameterization that can be induced by a uniform-normal-inverse-Wishart distribution over the or-

thogonal reduced-form parameterization. If one wants to use a prior distribution other than one that

can be induced by a uniform-normal-inverse-Wishart distribution over the orthogonal reduced-form

parameterization, then Algorithm 3 should be modified accordingly. As before, the efficiency of this

algorithm depends heavily on how close the used prior distribution is to a conjugate prior distribution

that can be induced by a uniform-normal-inverse-Wishart distribution over the orthogonal reduced-

form parameterization.

It is also important to notice that computing the volume element v(g◦fh)|Z (A0,A+) in Step 2 is

the most expensive part in implementing Algorithm 3. The rest of Algorithm 3 is quite fast. But the

reader should note that we do not need to compute v(g◦fh)|Z (A0,A+) for all the draws, only for those

that satisfy the sign restrictions. Numerical and timing issues associated with the computation of the

volume elements will be analyzed in Section 6.

If there are no zero restrictions, Algorithm 1 and Algorithm 3 both produce draws from the same

distribution over the structural parameterization conditional on the sign restrictions. It would seem

that Algorithm 1 would be much more efficient since it is not an importance sampler and no weights

would have to be computed. However, it is not hard to numerically verify that when there are no

zero restrictions, the weights are constant and so Algorithm 3 is not really an importance sampler in

this case either. Still, computing a QR-decomposition is more efficient than the recursive procedure

in Step 3 of Algorithm 2, so Algorithm 1 should certainly be used in this case.
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5.4 The Density Implied by Algorithm 2 Revisited

Algorithm 3 draws from the density NGN(ν,Φ,Ψ,Ω)(A0,A+) over the structural parameterization condi-

tional on the zero restrictions, while Algorithm 2 draws from the densityNIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|Z (A0,A+)

over the structural parameterization conditional on the zero restrictions, where (B,Σ,Q) = fh(A0,A+)

and Z denotes the set of all structural parameters that satisfy the zero restrictions.16 Given that the

main expense of Algorithm 3 is computing the importance weights, one might be tempted to dispense

with Algorithm 3 and simply use Algorithm 2, particularly if one was not wedded to using the normal-

generalized-normal distribution over the structural parameterization for the prior and posterior. While

this is permissible, the researcher should be aware of two unpleasant features of the distribution over

the structural parameterization conditional on the zero restrictions produced by Algorithm 2. First,

this distribution is not invariant to a reordering of the shocks.17 Second, it does not respect the impo-

sition of additional zero restrictions. Algorithm 3 does not suffer from either of these problems. We

expand on each of these below.

It is easiest to see each of the above features in the context of a simple example. Consider an SVAR

with 3 variables and one lag, without a constant. Suppose further that there were two zero restrictions

on the contemporaneous IRF given by

Z1F(A0,A+)e1 = 0 and Z2F(A0,A+)e2 = 0 (9)

where

F(A0,A+) =
(
A−1

0

)′
, Z1 =

[
1 0 0

]
, and Z2 =

[
0 1 0

]
. (10)

Let ν = n, Φ = In, Ψ = 0n, and Ω = In. Here, we will interpret this density as a prior density over

the structural parameterization conditional on the zero restrictions, but the posterior would have the

same functional form in this case as well.

We first consider what happens if the same restrictions were imposed in a different order. So,

instead of the zero restrictions defined by Equation (9), suppose one imposed the zero restrictions

given by

Z2F(A0,A+)e1 = 0 and Z1F(A0,A+)e2. (11)

16In this section we are going to compare the outcomes of Algorithm 2 and Algorithm 3. To simplify the presentation
we are going to assume that there are no sign restrictions.

17We thank Tom Doan for pointing out this fact in an earlier version of the paper.
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Clearly, this simply interchanges the roles of the first and second shocks. Let ZR1 denote the set of all

structural parameters satisfying the restrictions defined by Equation (9) and let ZR2 denote the set

of all structural parameters satisfying the restrictions defined by Equation (11). If (A0,A+) ∈ ZR1 ,

then swapping the first and second columns of both A0 and A+ will produce an element of ZR2 .

To illustrate that the order makes a difference, we make ten draws from ZR1 using Algorithm 2 and

compute their densities using NIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|ZR1
(A0,A+), where (B,Σ,Q) = fh(A0,A+).

We then swap the first and second columns of both A0 and A+ and compute their densities using

NIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|ZR2
(A0,A+), where (B,Σ,Q) = fh(A0,A+). Their ratios are reported in

Table 1.18 If the order did not matter, then all the entries would be one. Even though only ten draws

were analyzed, we see that the ordering changes the density of all the draws, with some changing by

quite a lot.

Draw 1 2 3 4 5 6 7 8 9 10
1.17 1.20 0.98 0.66 0.65 1.02 8.45 0.96 1.22 1.06

Table 1: Ratio of densities for ten draws of the structural parameters using differing shock orderings. The
ratio is computed with the density in ZR1 on the numerator and the density in ZR2 on the denominator.

Next, we show what happens if we impose additional zero restrictions. In the context of our

example, let ZR3 denote the set of all structural parameters satisfying the following zero restriction

Z1F(A0,A+)e1 = 0.

Of course, if (A0,A+) ∈ ZR1 , then (A0,A+) ∈ ZR3 . Hence, for the ten draws analyzed in Table 1, we

can compute the ratio ofNIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|ZR1
(A0,A+) toNIW(ν,Φ,Ψ,Ω)(B,Σ)v(g◦fh)|ZR3

(A0,A+),

where (B,Σ,Q) = fh(A0,A+). The ratios are reported in Table 2. If adding new restrictions did not

matter, then all the entries in the table would be one. Even though only ten draws were analyzed, we

see that adding restrictions changes the density of all the draws, with some changing by quite a lot.

Draw 1 2 3 4 5 6 7 8 9 10
0.74 0.62 0.52 2.13 1.58 1.11 1.37 0.55 1.21 0.65

Table 2: Ratio of densities for ten draws of the structural parameters after adding zero restrictions. The
ratio is computed with the density in ZR1 on the numerator and the density in ZR3 on the denominator.

This means that when using distributions over the structural parameterization conditional on the

18In this section, the densities are only computed up to a constant, but in this case the constant is the same across
both densities. So, the ratios are correctly reported.
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zero restrictions implied by Algorithm 2 as priors, including additional restrictions not only adds the

restrictions, restricting the support of the distribution, but changes the prior distribution over the

structural parameterization as well. So, if we saw the marginal likelihood increase with the addition

of restrictions, it is hard to disentangle whether the data favored the new restrictions or favored the

new prior distribution.19

6 Numerical Issues

While Algorithm 3 is fairly straightforward to apply, as with any numerical algorithm, there are

different implementations and these differences can affect both the efficiency and the accuracy of

the algorithm. In this section we highlight some of these issues. We first describe how to compute

the numerical derivatives associated with the computation of the volume element v(g◦fh)|Z (A0,A+).

Second, we will highlight how computing these volume elements is expensive, so we need to be judicious

when doing so. Finally, we will talk about the effective sample size associated with the importance

sampling embedded in Algorithm 3.

6.1 Numeric Derivatives

As mentioned, computing the volume element v(g◦fh)|Z (A0,A+) in Step 2 is the most expensive part

in implementing Algorithm 3. Both of these can be computed using Theorem 3, which requires the

computation of two derivatives. Generically, if f : Rb → Ra, then Df is an a × b matrix and the jth

column of Df can be approximated by (f(x+ εej)− f(x))/ε, where ej is the jth column of the b× b

identity matrix. This is called the one-sided approximation and requires b + 1 function evaluations.

Alternatively, one could approximate using (f(x + εej) − f(x − εej))/(2ε). This is the two-sided

approximation and requires 2b function evaluations. In general, the two-sided approximation is more

accurate but almost twice as expensive (see Section 6.2). In most applications, we find that the one-

sided approximation is good enough, but one must keep in mind that this might not always be the

case. Before choosing which approach to use, we recommend that in preliminary runs, one try both

and only use the two-sided approximation if the results vary between the two techniques. In Section

19The problems with Algorithm 2 described here are bound to appear in any algorithm that makes draws in the
orthogonal reduced-form parameterization and then transforms them into the desired parameterization abstracting
from computing the relevant volume elements. For example, Gambacorta, Hofmann and Peersman (2014), Baumeister
and Benati (2013), and Binning (2013) would suffer from the issues described.
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8.4 we show that, for our application, using one-sided derivatives affects the accuracy of neither the

computation of the volume elements nor the IRFs.

After the choice of technique has been made, we also need to choose the size of the tolerance, which

is ε in the previous paragraph. We recommend values between 10−4 and 10−7, with 10−6 as a good

starting point. Given the complexities of the function g ◦ fh we do not recommend values smaller than

square root machine epsilon, which is approximately 10−7 when using double precision.

6.2 Judicious Evaluations of Volume Elements

Since Step 2 is the most expensive part of Algorithm 3, it is important to compute the volume elements

only if the sign restrictions hold. For example, assume we want to identify a seven-variables system

with 12 lags using three sign and three zero restrictions. If we apply Algorithm 3 naively and we

compute the volume elements for all the iterations and not only if the sign restrictions hold, it takes

4,806 seconds (80.1 minutes) to do 10,000 iterations of Algorithm 3.20 This exercise is represented

by Timing 2 in the last column of Table 3. Of this time, 4,795 seconds (79.9 minutes) is devoted

to computing the volume elements, which is Step 2, and, as represented by Timing 1 in the same

column of the table, just 11 seconds are used by all the other steps combined. For this reason, it is

critical to keep the volume element evaluation to a minimum. In this example, about 20 percent of

the iterations satisfy the sign restrictions so if we evaluate the volume elements only for independent

draws that satisfy the sign restrictions, the run time drops to under 1040 seconds (17.3 minutes), a

significant savings. This exercise is represented by Timing 4 in the last column of Table 3. Efficiency

becomes crucial as the number of sign restrictions increases, so that the percentage of draws satisfying

the sign restrictions decreases. For instance, if only 1 percent of the iterations were to satisfy the sign

restrictions, then it would require approximately 1,000,000 iterations of Algorithm 3 to produce 10,000

independent draws satisfying the sign and zero restrictions. If the volume elements were computed

for all the iterations, this would take more than five full days to complete. However, if the volume

elements were evaluated only for those draws satisfying the sign restrictions, then 10,000 independent

draws satisfying the sign and zero restrictions could be produced in less than two hours.

All the timings mentioned above were for a two-sided derivative technique. Using a one-sided

derivative decreases the computation time by more than 40 percent. For instance, instead of taking

1040 seconds to run 10,000 iterations of Algorithm 3, it only took 544 seconds. This exercise is

20This was programmed in Matlab and run on a MacBook Pro with a 2.3GHz Intel i7 processor and 16GB of RAM.
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4 lags + 3 signs + 1 zero 12 lags + 3 signs + 3 zeros
n = 5 n = 6 n = 7 n = 5 n = 6 n = 7

Timing 1 7 8 9 8 9 11
Timing 2 707 1123 1661 1954 3162 4806
Timing 3 367 576 853 1002 1646 2521
Timing 4 115 186 265 440 676 1040
Timing 5 62 98 140 231 351 544

Draws satisfying signs 1542 1592 1546 2231 2103 2116
Effective sample size⋆ 0.79 0.84 0.82 1.00 1.00 1.00

Table 3: Time is reported in seconds. Timing 1 computes how long it takes to run Algorithm 3 when Step
5 is not computed. Timing 2 evaluates the same procedure as Timing 1 but computing the weights for every
draw, even if they do not satisfy the sign restrictions. Timing 3 evaluates the same procedure as Timing 2
but using a one-sided derivative. Timing 4 computes the timing of Algorithm 3, i.e., computing the weights
only if the sign restrictions are satisfied. Timing 5 evaluates the same procedure as Timing 4 but using a
one-sided derivative. Draws satisfying signs refers to the number of iterations satisfying the sign restrictions.
The letter n denotes the total number of variables in the system. ⋆Effective sample size as a share of the
draws satisfying the sign and zero restrictions.

represented by Timing 5 in the last column of Table 3. Timing 3 represents the time for the naive

implementation of the algorithm when a one-sided derivative technique is used. As we will see in

Section 8.4, the effects of using a one-sided derivative instead of a two-sided derivative are not reflected

in the IRFs.

The results just analyzed correspond to a seven-variables SVAR with 12 lags using three sign and

three zero restrictions. Table 3 also reflects the times for five additional systems: two other SVARs

with 12 lags using three sign and three zero restrictions (one with six variables and another with five)

and three SVARs with four lags using three sign restrictions and one zero restriction (in seven-, six-,

and five-variable systems). As the reader can see, the conclusions are pretty robust to changes in the

size of the SVAR.

6.3 Effective Sample Size

When using importance sampling, one should always compute the effective sample size to guard against

having only a few draws dominate the sample. If wi is the weight associated with the ith draw, then

the effective sample size is

((∑N
i=1 wi

)2
)
/
(∑N

i=1w
2
i

)
, where N is the total number of draws.

The effective sample size as a share of the draws satisfying the sign and zero restrictions is always

between 0 and 1. As its formula implies, the effective sample size should be interpreted as the actual

number of independent draws produced by the importance sampler. If the weights were all equal, then
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the effective sample size as a share of the draws satisfying the sign and zero restrictions would be 1.

Because the weight of a draw that does not satisfy the sign restrictions is zero, for Algorithm 3

the maximum effective sample size will be the number of draws satisfying the sign restrictions. In

most of the applications that we have run, the effective sample size was close to the number of draws

satisfying the sign restrictions, but one should always compute this diagnostic. In particular, for the

systems represented in Table 3 the effective sample size as a share of draws satisfying the sign and

zero restrictions was always greater than or equal to 0.79.

7 The Penalty Function Approach

In this section, we discuss the PFA developed by Mountford and Uhlig (2009). We briefly describe

the PFA and mention its drawbacks as reported in the literature. We choose the PFA to compare our

results because the PFA is commonly used to implement sign and zero restrictions. The PFA consists

of using a loss function to find an orthogonal matrix that satisfies the zero restrictions and that satisfies

or comes close to satisfying the sign restrictions; see Mountford and Uhlig (2009) for details. In the

PFA context, we call this the optimal orthogonal matrix. The literature has mentioned several issues

with this approach. First, by choosing a single orthogonal matrix the PFA is not set identifying the

SVAR. This drawback is important because the robustness associated with set identification is one

of the most appealing motivations for using sign and zero restrictions instead of more traditional

approaches. Second, the optimal orthogonal matrix may be such that the sign restrictions do not

hold.21 Third, as acknowledged by Uhlig (2005), the PFA rewards orthogonal matrices that imply

responses strongly satisfying the sign restrictions. This rewarding scheme can result in imposing

additional sign restrictions. For example, Caldara and Kamps (2012) use a bivariate SVAR to show

how the PFA restricts the output response to a tax increase to be negative. Finally, Binning (2013)

points out that in those cases in which several structural shocks are identified using the PFA, the

ordering on which the structural shocks are identified determines their importance. For the reasons

mentioned above, Uhlig (2005) and Caldara and Kamps (2012) conclude that the PFA should be

interpreted as incorporating additional identifying restrictions.

All these issues can be summarized by saying that in the case of the PFA, the identification does

not solely come from the sign and zero restrictions. The prior density over the structural parameteri-

zation implied by the PFA is such that, for every value of the reduced-form parameters, a single value

21This is true even in the extreme case in which no orthogonal matrix satisfies the sign restrictions.
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of structural parameters has positive prior probability. This implies that many structural parameters

that satisfy the sign and zero restrictions are discarded by the prior density over the structural pa-

rameterization implied by the PFA. In the next section, we will use Beaudry, Nam and Wang’s (2011)

empirical application to illustrate the implications of the PFA relative to our importance sampler. As

we will see, this example is insightful because it would allow us to analytically highlight how the PFA

adds identification restrictions.

8 Application to Optimism Shocks

In this section, we illustrate our importance sampler by revisiting the application about optimism

shocks previously analyzed in the literature by Beaudry, Nam and Wang (2011) using the PFA. The

aim of Beaudry, Nam and Wang (2011) is to contribute to the debate regarding the source and nature of

business cycles. The authors claim to provide new evidence on the relevance of optimism shocks as the

main driver of macroeconomic fluctuations using an SVAR identified with sign and zero restrictions.

For illustrative purposes it suffices to focus on Beaudry, Nam and Wang’s (2011) less restrictive

identification scheme. Using the PFA one could conclude that optimism shocks are associated with

standard business cycle type phenomena because they generate a simultaneous boom in consumption

and hours worked. But this conclusion relies on the fact that the identification does not solely come

from the sign and zero restrictions because the PFA is used. Once we use our importance sampler,

the described conclusion is harder to maintain. The benchmark SVAR in Beaudry, Nam and Wang

(2011) considers five variables: TFP, stock prices, consumption, the real federal funds rate, and hours

worked.22 In their less restrictive identification strategy, shown in Table 4, optimism shocks are

identified as positively affecting stock prices and not affecting TFP at horizon zero. Appendix C gives

details on their reduced-form prior density and the data.

In what follows we first compare the results obtained, for both the IRFs and the forecast error

variance decomposition (FEVD), using the PFA and our importance sampler. Next, we parse how the

implicit PFA prior density over the structural parameterization affects identification by unveiling zero

restrictions not explicitly recognized as being part of the identification strategy. Finally, we conclude

the empirical application by analyzing how using one- or two-sided derivatives affects the computation

of the volume elements and the IRFs.

22Beaudry, Nam and Wang (2011) also use an extended version of their model including investment and output as
additional variables. The issues illustrated here are also present when using the seven-variable model.
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Adjusted TFP Stock Prices Consumption Real Interest Rate Hours Worked
0 Positive Unrestricted Unrestricted Unrestricted

Table 4: Restrictions on IRFs at horizon 0.

8.1 IRFs

Let’s begin by comparing the IRFs obtained using the PFA with the ones obtained with our importance

sampler. This comparison is helpful to illustrate how Beaudry, Nam and Wang (2011) results do not

solely come from the sign and zero restrictions described in Table 4.

Panel (a) in Figure 2 shows the point-wise median as well as the 68 percent point-wise probability

bands for the IRFs of TFP, stock prices, consumption, the federal funds rate, and hours worked using

the PFA.23 The key message from this panel is that optimism shocks generate a boom in consumption

and hours worked. The point-wise probability bands associated with the IRFs do not contain zero for

at least 20 quarters. Thus, a researcher looking at these results would conclude that optimism shocks

generate standard business cycle type phenomena.

Indeed, these IRFs are highlighted by Beaudry, Nam and Wang (2011). If these IRFs were the

result of only imposing the restrictions described in Table 4, the findings reported in Panel (a) of Figure

2 would strongly support the view that optimism shocks are relevant for business cycle fluctuations.

The question is how much of the results reported in Panel (a) of Figure 2 are due to the restrictions

described in Table 4 and how much are due to the restrictions that the PFA adds.

Panel (b) in Figure 2 shows that, once we use our importance sampler, the results highlighted by

Beaudry, Nam and Wang (2011) disappear. There are three important differences with the results

reported when working with the PFA. First, the PFA chooses a very large median response of stock

prices in order to minimize the loss function used to impose the sign restriction on stock prices.

Second, the point-wise median IRFs for consumption and hours worked are closer to zero when we

use our importance sampler. Third, the point-wise probability bands associated with our importance

sampler are much larger than the ones obtained with the PFA. To highlight that the PFA not only

implies artificially narrow point-wise probability bands but also distorts the point-wise median IRFs,

Figure 3 compares the IRFs obtained with our importance sampler with the median IRFs computed

with the PFA. As the reader can see, the PFA boosts the effects of optimism shocks on stock prices,

23There are alternative methods of summarizing the outcome of set identified SVARs models; see Inoue and Kilian
(2013). We report 68 percent point-wise probability bands in order to facilitate the comparison with the results reported
by Beaudry, Nam and Wang (2011).
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(a) PFA

(b) Importance Sampler

Figure 2: IRFs to a one standard deviation optimism shock. PFA and importance sampler comparison.
The solid curves represent the point-wise posterior medians, and the shaded areas represent the 68 percent
point-wise probability bands. The figure is based on 10,000 independent draws obtained using the PFA and
Algorithm 3, respectively.

consumption, and hours.
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Figure 3: IRFs to a one standard deviation optimism shock. The dotted curves depict the point-wise posterior
medians when using the PFA. The solid curves and the shaded areas represent the point-wise posterior medians
and 68 percent point-wise probability bands, respectively, when using our importance sampler. The figure is
based on 10,000 independent draws obtained using the PFA and Algorithm 3, respectively.

PFA Importance Sampler

Adjusted TFP
0.17 0.10

[0.08,0.30] [0.03,0.25]

Stock Prices
0.73 0.26

[0.57,0.85] [0.06,0.58]

Consumption
0.27 0.16

[0.14,0.43] [0.03,0.49]

Real Interest Rate
0.14 0.19

[0.07,0.22] [0.08,0.38]

Hours Worked
0.32 0.17

[0.21,0.44] [0.05,0.47]

Table 5: Share of FEVD attributable to optimism shocks at horizon 40. The column PFA (Importance
Sampler) reports for each variable the posterior median and the 68 percent probability intervals of the FEVD
attributable to optimism shocks at horizon 40 when using the PFA (Importance Sampler). The table is based
on 10,000 independent draws obtained using the PFA and Algorithm 3, respectively.

8.2 Forecast Error Variance Decomposition

Table 5 compares the contribution of optimism shocks to the FEVD obtained under the PFA and

our importance sampler. For ease of exposition, we only focus on the contributions to the FEVD at
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horizon 40. Using the PFA, the median contribution of optimism shocks to the FEVD of consumption

and hours worked is 27 and 32 percent, respectively. In contrast, using our importance sampler, the

median contributions are 16 and 17 percent, respectively. Table 5 also reports the 68 percent point-wise

probability intervals in brackets. Similarly to the case with the IRFs, using our importance sampler

results in smaller contributions of optimism shocks to the FEVD of most variables and probability

intervals for the FEVD that are much wider than the ones obtained using the PFA.

8.3 Additional Restrictions

As mentioned, the PFA introduces additional restrictions. For the application studied here, we now

analytically characterize the optimal orthogonal matrix that the PFA chooses. This will allow us to

analytically show how the PFA incorporates additional identifying restrictions (zero restrictions in

this case) to the sign and the zero restrictions described in Table 4. Because h(Σ) is the Cholesky

decomposition with h(Σ) upper triangular and positive diagonal, direct computations show that, for

any value of the reduced-form parameters, the optimal orthogonal matrix that the PFA chooses has

the form Q∗ = [q∗
1 . . . q5] where the first column is equal to q∗

1 = [0 1 0 0 0]′.24 For any value of

the reduced-form parameters (B,Σ), let (A∗
0,A

∗
+) be the value of the structural parameters implied

by (B,Σ,Q∗), i.e. (A∗
0,A

∗
+) = f−1

h (B,Σ,Q∗). Since the IRFs at horizon zero 0 equal
(
(A∗

0)
−1)′ =

h(Σ)′Q∗, this value of the structural parameters satisfies both the sign and the zero restrictions

described in Table 4.

Is (A∗
0,A

∗
+) the only value of the structural parameters that satisfies the sign and zero restrictions?

The answer is no. To see this, consider now the set

O(5) =
{
[q1 . . . q5] ∈ O(5) | q1 = [0 q2,1 q3,1 q4,1 q5,1]

′ and q2,1 > 0
}
.

For any value of the reduced-form parameters (B,Σ) and Q ∈ O(5), let (A0,A+) be the value

of the structural parameters implied by (B,Σ,Q), i.e., (A0,A+) = f−1
h (B,Σ,Q). This value of the

structural parameters also satisfies both the sign and the zero restrictions described in Table 4. Clearly,

the PFA disregards most of the elements of O(5). What are the consequences of using the PFA? Since

(A∗
0,A

∗
+) = f−1

h (B,Σ,Q∗), the first column of A∗
0 = h(Σ)−1Q∗ is of the form [t1,2 t2,2 0 0 0]′, where

ti,j is the (i, j) entry of h(Σ)−1 for any value of the reduced-form parameters. Hence, the PFA imposes

24Similar computations could be done for other choices of h(Σ), but they would not be as direct. In fact, we use this
decomposition because it is the one that Mountford and Uhlig (2009) use when describing the PFA.
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the condition that the first column of the matrix of contemporaneous structural parameters has three

zeros in the positions just described. This clearly means that the PFA introduces zero restrictions on

the structural parameters that are not explicitly acknowledged in the identification strategy described

in Table 4.

8.4 One-Sided Versus Two-Sided Derivatives

In Section 6.2, we showed several cases where using one-sided derivatives decreases computing time

considerably. We now show that, at least for our application, this can be done without compromising

the numerical accuracy of either the volume elements or the IRFs.

Figure 4: Volume elements comparison. The histogram shows the percent difference between the volume
element v(g◦fh)|Z(A0,A+) computed using one-sided relative to two-sided derivatives. The histogram includes
99 percent of the support of the distribution and it is based on 10,000 independent draws obtained using
Algorithm 3.

Consider Figure 4. This figure shows the histogram of the percentage difference between the volume

element associated with the mapping v(g◦fh)|Z (A0,A+), when computed using one-sided derivatives

relative to when the same volume element is computed using two-sided derivatives. The percentage

difference is expressed in terms of the volume elements computed using two-sided derivatives. The

figure shows that most of the percent differences are smaller than 0.1. These results suggest that it is

unlikely to find cases in which the one- and two-sided derivatives substantially differ. Next, we show

that the percent differences in the volume element reported above do not affect the IRFs. Figure 5

plots the percentage point difference between the median and the bounds of the probability bands of

the IRFs obtained using one-sided derivatives and the ones obtained using two-sided derivatives. In all
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Figure 5: IRFs comparison. The solid lines show the percentage point difference between the point-wise
median IRFs computed using one-sided relative to two-sided derivatives. The dashed lines and the dashed-
dotted lines show the percentage point difference in point-wise 16th and 84th quantile IRFs computed using
one-sided relative to two-sided derivatives, respectively. The figure is based on 10,000 independent draws
obtained using Algorithm 3.

the cases, the percentage point difference is smaller than 0.1, and the conclusions a researcher would

obtain are unchanged.

9 Conclusion

We developed efficient algorithms for Bayesian inference based on SVARs identified with sign and zero

restrictions. Critically, our algorithms guarantee that identification is coming only from the sign and

zero restrictions proclaimed by the researcher. We extend the sign restrictions methodology developed

by Rubio-Ramı́rez, Waggoner and Zha (2010) to allow for zero restrictions.
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Appendix

A Proofs

In this section of the appendix, we provide all the proofs mentioned in the main text. We first provide

details and proofs, or references to proofs, for Section 3.4. Then, we prove Proposition 1. Finally, we

prove the three claims made in Sections 5.1 and 5.2.

A.1 Integration on Manifolds and Change of Variables

In this section we fill in the details of Section 3.4. We follow the treatment in Spivak (1965). Theorem 1

of Section 3.4 is Theorem 3-13 of Spivak (1965), with two differences. First, in Theorem 3-13 there is

an additional assumption that det(Dγ(u)) ̸= 0, which can be relaxed using Sard’s Theorem.25 Second,

in Spivak (1965) integration is defined in the spirit of Riemann as opposed to Lebesgue. Thus the

notion of an integrable function is much more restrictive.26 However, since Theorem 1 holds for all

Riemann integrable functions, it also holds for all Lebesgue integrable functions. When we use the

term integrable, we will mean Lebesgue integrable.

While Spivak (1965) develops all the necessary machinery to prove Theorems 2 and 3, they are not

explicitly treated because the goal of that book is the generalization of Stokes’ Theorem. The same is

true of other texts on multivariate calculus. For this reason, we will very briefly review the necessary

machinery and then prove Theorems 2 and 3 using Theorem 1.

Let V be a b-dimensional smooth manifold in Ra. We can define a σ-algebra S on V by A ∈ S

if and only if γ−1(A) is Lebesgue measurable for any coordinate system γ : U → V . Because there

exists a countable basis of open balls in Ra, for any A ∈ S there exists a decomposition (Ai, γi, Ui)
∞
i=1

such that γi : Ui → V is a coordinate system with
∫
Ui
| det(Dγi(ui)

′Dγi(ui))|
1
2dui < ∞, Ai ∈ S with

Ai ⊂ γi(Ui), Ai ∩ Aj = ∅ if i ̸= j, and A =
∪∞

i=1Ai. These decompositions can be used to define a

measure µ on V by

µ(A) =
∞∑
i=1

∫
γ−1
i (Ai)

| det(Dγi(ui)
′Dγi(ui))|

1
2dui.

Since the decompositions are not unique, in order for µ to be well-defined, it must be independent of

the decomposition of A, which the following proposition implies.

25See Theorem 3-14 of Spivak (1965) for a statement and proof of Sard’s Theorem.
26See the third section of Chapter 3 in Spivak (1965) and Section 3 of Chapter 11 in Royden (1963) for a discussion

of these two notions of an integrable function. We will refer to these as Riemann integrable and Lebesgue integrable.
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Proposition 2. Let V ⊂ Ra be a b-dimensional smooth manifold, let γ1 : U1 → V be a coordinate

system in V, let U2 ⊂ Rb be open, and let γ2 : U2 → V be one-to-one and continuously differentiable.

If A ⊂ γ(U1) ∩ γ(U2), λ : A → R, and the function λ(γ1(u1))| det(Dγ1(u1)
′Dγ1(u1))|

1
2 is integrable

over γ−1
1 (A), then

∫
γ−1
1 (A)

λ(γ1(u1))| det(Dγ1(u1)
′Dγ1(u1))|

1
2du1 =

∫
γ−1
2 (A)

λ(γ2(u2))| det(Dγ2(u2)
′Dγ2(u2))|

1
2du2.

Proof. It follows from the proof of Theorem 5-2 in Spivak (1965) that γ−1
2 (γ1(U1)) is an open set in Rb

and γ−1
1 ◦ γ2 : γ−1

2 (γ1(U1)) → Rb is continuously differentiable. Since γ−1
1 ◦ γ2 is one-to one, it follows

from Theorem 1 and the chain rule that

∫
γ−1
1 (A)

λ(γ1(u1))| det(Dγ1(u1)
′Dγ1(u1))|

1
2du1

=

∫
γ−1
2 (A)

λ(γ1(γ
−1
1 ◦ γ2(u2)))| det(Dγ1(γ

−1
1 ◦ γ2(u2))

′Dγ1(γ
−1
1 ◦ γ2(u2)))|

1
2 | det(D(γ−1

1 ◦ γ2)(u2))|du2

=

∫
γ−1
2 (A)

λ(γ2(u2))| det(D(γ−1
1 ◦ γ2)(u2)

′Dγ1(γ
−1
1 ◦ γ2(u2))

′Dγ1(γ
−1
1 ◦ γ2(u2))D(γ−1

1 ◦ γ2)(u2))|
1
2du2

=

∫
γ−1
2 (A)

λ(γ2(u2))| det(D(γ1 ◦ γ−1
1 ◦ γ2)(u2)

′D(γ1 ◦ γ−1
1 ◦ γ2)(u2))|

1
2du2

=

∫
γ−1
2 (A)

λ(γ2(u2))| det(Dγ2(u2)
′Dγ2(u2))|

1
2du2

So, if (Ai, γi, Ui)
∞
i=1 and (Ãj, γ̃j, Ũj)

∞
j=1 are decompositions of A ∈ S, then applying Proposition 2,

with λ(v) = 1 for every v ∈ A, gives

∞∑
i=1

∫
γ−1
i (Ai)

| det(Dγi(ui)
′Dγi(ui))|

1
2dui =

∞∑
i=1

∞∑
j=1

∫
γ−1
i (Ai∩Ãj)

| det(Dγi(ui)
′Dγi(ui))|

1
2dui

=
∞∑
j=1

∞∑
i=1

∫
γ̃−1
j (Ai∩Ãj)

| det(Dγ̃j(ũj)
′Dγ̃j(ũj))|

1
2dũj =

∞∑
j=1

∫
γ̃−1
j (Ãj)

| det(Dγ̃j(ũj)
′Dγ̃j(ũj))|

1
2dũj.

So the measure is independent of the decomposition.

This measure is called the volume measure on V . Comparing this definition of “volume” for the

case that b is one or two with the formulas for arc length or surface area from elementary calculus,

one sees that they are identical. More generally, | det(Dγ(u)′Dγ(u))| 12 is equal to the volume of the
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parallelepiped spanned by the columns of Dγ(u), which justifies calling this measure volume.27

This measure on the smooth manifold V can be used to define integration on V and if A ∈ G,

λ : A → R is integrable, and (Ai, γi, Ui) is a decomposition of A, then

∫
A

λ(v)dv =
∞∑
i=1

∫
Ai

λ(v)dv =
∞∑
i=1

∫
γ−1
i (Ai)

λ(γi(ui))| det(Dγi(ui)
′Dγi(ui))|

1
2dui.

Here, dv denotes integration with respect to the volume measure, while dui is integration with respect

to Lebesgue measure.

Theorem 2 also follows directly from Proposition 2. To see this, let U , γ, A, and λ be as in

Theorem 2 and let (Ai, γi, Ui)
∞
i=1 be a decomposition of A. By the definition of integration with

respect to the volume measure and Proposition 2, with λi playing the role of λ1 and λ playing the role

of λ2,

∫
A

λ(v)dv =
∞∑
i=1

∫
γ−1
i (Ai)

λ(γi(ui))| det(Dγi(ui)
′Dγi(ui))|

1
2dui

=
∞∑
i=1

∫
γ−1(Ai)

λ(γ(u))| det(Dγ(u)′Dγ(u))|
1
2du =

∫
γ−1(A)

λ(γ(u))| det(Dγ(u)′Dγ(u))|
1
2du.

We now prove Theorem 3. Let U , γ, β, U , V , A, and λ be as in Theorem 3. First, Theorem 5-1

in Spivak (1965) guarantees that U is a d-dimensional smooth manifold in Rb. Let (Ai, γi, Ui)
∞
i=1 be a

decomposition of A. Using Theorem 2 and the chain rule, we have

∫
A

λ(v)dv =
∞∑
i=1

∫
Ai

λ(v)dv

=
∞∑
i=1

∫
(γ◦γi)−1(Ai)

λ(γ ◦ γi(ui))| det(D(γ ◦ γi)(ui)
′D(γ ◦ γi)(ui))|

1
2dui

=
∞∑
i=1

∫
γ−1
i (γ−1(Ai)∩Ui)

λ(γ(γi(ui)))| det(Dγi(ui)
′Dγ(γi(ui))

′Dγ(γi(ui))Dγi(ui))|
1
2dui.

The last integral is over γ−1
i (γ−1(Ai) ∩ Ui) because γ is only guaranteed to be one-to-one over

β−1({0}) and so γ−1(Ai) may not be contained in γi(Ui). Because β(γi(ui)) = 0 for every ui ∈ Ui,

Dβ(γi(ui))Dγi(ui) = D(β ◦γi)(ui) = 0 for every ui ∈ Ui. So, if the columns of the b×d matrix Nγi(ui)

are an orthonormal basis for the null space of Dβ(γi(ui)), then Dγi(ui) = Nγi(ui)X for some d × d

27See Chapter 5 of Munkres (1991).
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matrix X. Furthermore, Dγi(ui)
′Dγi(ui) = X′X. Again, applying Theorem 2 we have that

∫
A

λ(v)dv =
∞∑
i=1

∫
γ−1
i (γ−1(Ai)∩Ui)

λ(γ(γi(ui)))| det(Dγi(ui)
′Dγ(γi(ui))

′Dγ(γi(ui))Dγi(ui))|
1
2dui

=
∞∑
i=1

∫
γ−1
i (γ−1(Ai)∩Ui)

λ(γ(γi(ui)))| det(N′
γi(ui)

Dγ(γi(ui))
′Dγ(γi(ui))Nγi(ui))|

1
2 | det(Dγi(ui)

′Dγi(ui))|
1
2dui

=
∞∑
i=1

∫
γ−1Ai∩Ui

λ(γ(u))| det(N′
uDγ(u)′Dγ(u)Nu)|

1
2du =

∫
γ−1(A)∩U

λ(γ(u))| det(N′
uDγ(u)′Dγ(u)Nu)|

1
2du.

This completes the proof of Theorem 3.

A.2 Proof of Proposition 1

We will compute vfh indirectly using f−1
h and Theorem 3. The function f−1

h is not defined over

an open set, so to apply Theorem 3 we must extend the definition of f−1
h . Let U ⊂ Rn(m+2n)

be the set of all (B,Σ,Q) such that B is m × n, Q is n × n, and Σ is n × n and positive defi-

nite.28 Define gh : U → Rn(m+n) by gh(B,Σ,Q) = (h̃(Σ)−1Q,Bh̃(Σ)−1Q), where h̃(Σ) = h
(
Σ+Σ′

2

)
.

When Σ is restricted to be symmetric and Q is restricted to be orthogonal, gh is equal to f−1
h .

Let β : U → Rn2
be any differentiable function such that its derivative is of full row rank and

β(B,Σ,Q) = 0 if and only if Σ is symmetric and Q is orthogonal. Let U = β−1({0}). Theorem 3 im-

plies that vgh|U (B,Σ,Q) = | det(N′
(B,Σ,Q)Dgh(B,Σ,Q)′Dgh(B,Σ,Q)N(B,Σ,Q))|

1
2 , where the columns

of N(B,Σ,Q) form an orthonormal basis for the null space of Dβ(B,Σ,Q).29 In this case, because

Dgh(B,Σ,Q)N(B,Σ,Q) is square, vgh|U (B,Σ,Q) will be equal to | det(Dgh(B,Σ,Q)N(B,Σ,Q))|. Finally,

because fh and gh|U are inverses, vfh(A0,A+) will be equal to the reciprocal of vgh|U (fh(A0,A+)). In

what follows, we will first compute Dgh(B,Σ,Q), then define β(B,Σ,Q), compute Dβ(B,Σ,Q), and

then findN(B,Σ,Q). The final, and most involved, step then be to compute | det(Dgh(B,Σ,Q)N(B,Σ,Q))|

to obtain vfh(A0,A+).

The derivative of gh can be computed using formulas for the chain rule, the derivative of a matrix

product, and the derivative of a matrix inverse, all of which are given in Appendix A.13 of Lütkephol

28A matrix Σ is positive definite if and only if min∥x∥=1 x
′Σx > 0. The set of all positive definite matrices is open

in the set of all n× n matrices and if Σ is positive definite, then so is Σ+Σ′

2 .
29Derivatives are defined for vector-valued functions of a vector argument. The function gh can be written in this

form as gh(vec(B), vec(Σ), vec(Q)) = (vec(h̃(Σ)−1Q), vec(Bh̃(Σ)−1Q)), where vec() denotes the operator that stacks
the columns of a matrix into a vector. Similar representations are available for the functions β and h̃. When taking
derivatives this representation will be implicit.
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(1993). A direct computation gives

Dgh(B,Σ,Q)

=

 In2 0n2,nm

In ⊗B Inm

 0n2,nm −(Q′ ⊗ In)(h̃(Σ)′ ⊗ h̃(Σ))−1Dh̃(Σ) In ⊗ h̃(Σ)−1

(h̃(Σ)−1Q)′ ⊗ Im 0nm,n2 0nm,n2

 .

To define β, let Ln denote the elimination matrix and let Dn denote the duplication matrix.30 A

n×n matrix Q is orthogonal if and only if Ln vec(QQ′−In) = 0. The columns of Dn are perpendicular

and form a basis for the set of all vectorized symmetric matrices. The norm of n(n−1)
2

of these columns

is
√
2, while the remaining n columns are of norm 1. Thus there is a diagonal matrix ∆ such that

the columns of NS = Dn∆ form an orthonormal basis for the set of vectorized symmetric matrices

and the determinant of ∆ is equal to 2−
n(n−1)

4 . Let NA be any n2 × n(n−1)
2

matrix such that [NS NA]

is orthogonal. A matrix Σ is symmetric if and only if N′
A vec(Σ) = 0. We define β : U → Rn2

by

β(B,Σ,Q) = (N′
A vec(Σ),Ln vec(QQ′ − In)).

To compute the derivative of β, we will also need the commutation matrix, which we will denote

by Kn,n.
31 It follows from the definition of Kn,n that if f is a differentiable function whose range is a

subset of the n×nmatrices, then D(f ′) = Kn,nDf . It is also the case that (X⊗Y)Kn,n = Kn,n(Y⊗X)

for n× n matrices X and Y.32 A direct computation gives that the derivative of β is

Dβ(B,Σ,Q) =

0n(n−1)
2

,nm
N′

A 0n(n−1)
2

,n2

0n(n+1)
2

,nm
0n(n+1)

2
,n2 Ln(In +Kn,n)(Q⊗ In)

 .

Define N(B,Σ,Q) by

N(B,Σ,Q) =


Inm 0

nm,
n(n+1)

2

0
nm,

n(n−1)
2

0n2,nm NS 0
n2,

n(n−1)
2

0n2,nm 0
n2,

n(n+1)
2

(Q′ ⊗ In)NA

 .

Because [NS NA] is orthogonal, the columns of NA form an orthonormal basis for the set of all vector-

30Ln is the unique n(n+1)
2 × n2 such that Ln vec(X) = vech(X) for every n × n matrix X and Dn is the unique

n2 × n(n+1)
2 matrix such that Dn vech(X) = vec(X) for every n × n symmetric matrix X, where vech() denotes the

operator that stacks the elements of a square matrix on or below the diagonal into a vector.
31Kn,n is the unique n2 × n2 matrix such that Kn,n vec(X) = vec(X′) for every n× n matrix X.
32See Appendix A.12.2 of Lütkephol (1993).
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ized n× n anti-symmetric matrices.33 This implies that the columns of NA also form an orthonormal

basis for the null space of (In +Kn,n). If β(B,Σ,Q) = 0, so that Q is orthogonal, then it is easy to

directly verify that Dβ(B,Σ,Q)N(B,Σ,Q) = 0 and N′
(B,Σ,Q)N(B,Σ,Q) = In(m+n). Thus the columns of

N(B,Σ,Q) are orthonormal and in the null space of Dβ(B,Σ,Q). So, by a dimension argument, the

columns of N(B,Σ,Q) must form an orthonormal basis for the null space of Dβ(B,Σ,Q).

A direct computation gives that | det(Dgh(B,Σ,Q)N(B,Σ,Q))| is equal to

| det((h̃(Σ)−1Q)′ ⊗ Im)| · | det(Q′ ⊗ h̃(Σ)−1)| ·
∣∣∣det([−(h̃(Σ)′ ⊗ In)

−1Dh̃(Σ)NS NA

])∣∣∣ . (12)

When Σ is symmetric, the first two terms are equal to | det(Σ)|−m
2 and | det(Σ)|−n

2 , respectively.34

Since h̃(Σ)′h̃(Σ) = Σ+Σ′

2
, it follows that (In2 +Kn,n)(In ⊗ h̃(Σ)′)Dh̃(Σ) = 1

2
(In2 +Kn,n). Multiplying

by NS and rearranging gives (In2 +Kn,n)((In⊗ h̃(Σ)′)Dh̃(Σ)NS − 1
2
NS) = 0. Because the columns of

NA form an orthonormal basis for the null space of (In +Kn,n), there exists a n(n−1)
2

× n(n+1)
2

matrix

X such that (In ⊗ h̃(Σ)′)Dh̃(Σ)NS = 1
2
NS +NAX. So, the third term in Expression (12) is equal to∣∣∣det([−(h̃(Σ)′ ⊗ h̃(Σ)′)−1(1

2
NS +NAX) NA

])∣∣∣. Similarly, since (In2+Kn,n)(h̃(Σ)′⊗h̃(Σ)′)−1NA =

(h̃(Σ)′⊗ h̃(Σ)′)−1(In2 +Kn,n)NA = 0, it follows that there exists an n(n−1)
2

× n(n+1)
2

matrix Z such that

(h̃(Σ)′ ⊗ h̃(Σ)′)−1NAX = NAZ. This implies that the third term in Expression (12) is also equal to

∣∣∣det([−1
2
(h̃(Σ)′ ⊗ h̃(Σ)′)−1NS NA

])∣∣∣
=

∣∣∣∣∣∣det
1

4
N′

S(h̃(Σ)⊗ h̃(Σ))−1(h̃(Σ)′ ⊗ h̃(Σ)′)−1NS −1
2
N′

S(h̃(Σ)⊗ h̃(Σ))−1NA

−1
2
N′

A(h̃(Σ)′ ⊗ h̃(Σ)′)−1NS In(n−1)
2

∣∣∣∣∣∣
1
2

, (13)

where the equality follows by multiplying by the transpose on the left. The formula for the determinant

of a block matrix (see Appendix A.10 of Lütkephol (1993)) implies that Equation (13) is equal to

∣∣∣∣det(1

4
N′

S(h̃(Σ)⊗ h̃(Σ))−1(In2 −NAN
′
A)(h̃(Σ)′ ⊗ h̃(Σ)′)−1NS

)∣∣∣∣ 12
=

∣∣∣∣det(1

4
N′

S(h̃(Σ)⊗ h̃(Σ))−1NSN
′
S(h̃(Σ)′ ⊗ h̃(Σ)′)−1NS

)∣∣∣∣ 12
=

∣∣∣∣det(1

2
N′

S(h̃(Σ)−1 ⊗ h̃(Σ)−1)NS

)∣∣∣∣ (14)

33A square matrix X is anti-symmetric if and only if X′ = −X.
34This follows from the fact that |det(X⊗Y)| = |det(X)|n|det(Y)|m for m×m matrices X and n× n matrices Y,

see Appendix A.11 of Lütkephol (1993).
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Since NS = Dn∆, Equation (16) of Appendix A.12.2 of Lütkephol (1993) implies that Equation (14)

is equal to 2−
n(n+1)

2 | det(Σ)|−n+1
2 . Putting this all together, vgh|U (B,Σ,Q) = 2−

n(n+1)
2 | det(Σ)|− 2n+m+1

2

and vfh(A0,A+) = 2
n(n+1)

2 | det(A0)|−(2n+m+1).

A.3 Proofs of Claims in Sections 5.1 and 5.2

In Sections 5.1 and 5.2 the following claims were made, which we now prove.

1. The derivative of β(A0,A+) has full row rank for all structural parameters (A0,A+).

2. If (B,Σ,Q), withQ = (q1, · · · ,qn), are orthogonal reduced-form parameters such that f−1
h (B,Σ,Q)

satisfies the zero restrictions, then Mj(B,Σ,q1, · · · ,qj−1) is of full row rank for 1 ≤ j ≤ n.

3. There exists an open set V ⊂ Rnm+n2+n2
such that the functions Kj(B,Σ,q1, · · · ,qj−1) can be

defined so that they are differentiable for all (B,Σ,Q) ∈ V , where Q = (q1, · · · ,qn). Also, any

structural parameters satisfying the zero restrictions is almost surely in the set U = f−1
h (V ).

To see that (1) holds, note that Dβ(A0,A+) = diag1≤j≤n(Zj)DF(A0,A+).
35 The regularity condi-

tion on F implies that DF(A0,A+) is of full row rank and it was assumed that Zj was of full row rank

for 1 ≤ j ≤ n. This implies that Dβ(A0,A+) is of full row rank. To see that (2) holds, first note that it

follows from (1) that the set of all structural parameters (A0,A+) that satisfy β(A0,A+) = 0 will be an

(n(m+n)−
∑n

j=1 zj)-dimensional smooth manifold in Rn(m+n). Thus the set of all orthogonal reduced-

form parameters (B,Σ,Q) such that β(f−1
h (B,Σ,Q)) = 0 will be an (n(m+n)−

∑n
j=1 zj)-dimensional

smooth manifold in Rn(m+2n). If Σ is symmetric and positive definite and Q = (q1, · · · ,qn), then Q

will be orthogonal and β(f−1
h (B,Σ,Q)) = 0 if and only if Mj(B,Σ,q1, · · · ,qj−1)qj = 0 and q′

jqj = 1,

for 1 ≤ j ≤ n. Thus a dimension argument shows that the set of all orthogonal reduced-form param-

eters (B,Σ,Q) such that β(f−1
h (B,Σ,Q)) = 0 will be an (n(m + n) −

∑n
j=1 zj)-dimensional smooth

manifold in Rn(m+2n) if and only if Mj(B,Σ,q1, · · · ,qj−1) is of full row rank for any such (B,Σ,Q)

and all 1 ≤ j ≤ n. We show that (3) holds. For non-singular matrices, the Gram-Schmidt process is

well-defined, is continuously differentiable, and produces the QR-decomposition with the diagonal of

the triangular matrix positive. We shall use this fact to define the set V and the functions Kj.

In Section 5.1, the matrix Mj(B,Σ,q1, · · · ,qj−1) was defined for all m×n matrices B, all symmet-

ric and positive definite n× n matrices Σ, and all orthonormal n-dimensional vectors (q1, · · · ,qj−1).

35Since Zj is zj×r for 1 ≤ j ≤ n, diag1≤j≤n(Zj) is the (
∑n

j=1 zj)× (rn) block diagonal matrix with the Zj appearing
along the diagonal.
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Using gh, defined in Appendix A.2, we can extend this to Mj(B,Σ,Q) for all m × n matrices B, all

positive definite n× n matrices Σ, and all n× n matrices Q by

Mj(B,Σ,Q) =
[
q1 · · · qj−1 (ZjF(gh(B,Σ, In)))

′
]′
,

where Q = [q1, · · · ,qn]. For 1 ≤ j ≤ n, let Wj be some fixed (n + 1 − j − zj) × n matrix and let

M̃j(B,Σ,Q) = [Mj(B,Σ,Q)′ W′
j]
′. Let V be the set of all (B,Σ,Q) ∈ Rn(m+2n) such that Σ is

positive definite and M̃j(B,Σ,Q) is non-singular for 1 ≤ j ≤ n, which is an open set. Let

M̃j(B,Σ,Q)′ =

[
K̃j(B,Σ,Q)︸ ︷︷ ︸

n×(j−1+zj)

Kj(B,Σ,Q)︸ ︷︷ ︸
n×(n+1−j−zj)

]
Rj,1,1(B,Σ,Q)︸ ︷︷ ︸
(j−1+zj)×(j−1+zj)

Rj,1,2(B,Σ,Q)︸ ︷︷ ︸
(j−1+zj)×(n+1−j−zj)

0︸︷︷︸
(n+1−j−zj),(j−1+zj)

Rj,2,2(B,Σ,Q)︸ ︷︷ ︸
(n+1−j−zj)×(n+1−j−zj)


be the QR-decomposition with the diagonals of the upper triangular matrices Rj,1,1(B,Σ,Q) and

Rj,2,2(B,Σ,Q) positive. In light of the above discussion, Kj(B,Σ,Q) is continuously differentiable

over V . Since Mj(B,Σ,Q) = Rj,1,1(B,Σ,Q)′K̃j(B,Σ,Q)′, the columns of Kj(B,Σ,Q) form an

orthonormal basis for the null space of Mj(B,Σ,Q).

All that remains to be shown is that any structural parameters satisfying the zero restrictions is

almost surely in the set U = f−1
h (V ). From (2), we know that Mj(B,Σ,q1, · · · ,qj−1) is of full row

rank for any (B,Σ,Q) satisfying the zero restrictions and all 1 ≤ j ≤ n. This implies that for almost

all choices of the Wj, the matrices M̃j(B,Σ,q1, · · · ,qj−1) will be non-singular. From this it follows

that almost all structural parameters satisfying the zero restrictions will be in U . Furthermore, this

suggests that choosing the Wj to be some fixed random matrices, say standard normal, will almost

surely deliver the desired functions Kj.

B The IRF Parameterization

In this appendix we describe the mapping between the orthogonal reduced-form parameterization and

the IRF parameterization. To do so, first we define the IRF parameterization as a function of the

structural parameters. Notice that the IRF of the ith variable to the jth structural shock at horizon

k ≤ 0 is the element in row i and column j of the matrix Lk(A0,A+), where L0(A0,A+) =
(
A−1

0

)′
and Lk(A0,A+) =

∑min{k,p}
ℓ=1

(
AℓA

−1
0

)′
Lk−ℓ(A0,A+), for k > 0. We combine the IRFs at horizons one

through p and the constant term c(A0,A+) = c (which is the last row of A+) into a single matrix
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L+ =
[
L′

1 · · · L′
p c′

]′
. We call (L0,L+) the IRF parameterization.

The expressions above define a mapping, which we will denote by ϕ, from the structural parame-

terization to the IRF parameterization. This mapping is invertible and its inverse is given by

ϕ−1(L0,L+) =
(
(L−1

0 )′︸ ︷︷ ︸
A0

, [A1(L0,L+)
′ · · · Ap(L0,L+)

′ c(L0,L+)
′]
′︸ ︷︷ ︸

A+

)

where Ak(L0,L+) is defined recursively for 1 ≤ k ≤ p by

Ak(L0,L+) =
(
LkL

−1
0

)′
(L−1

0 )′ −
k−1∑
ℓ=1

(
Lk−ℓL

−1
0

)′
Aℓ(L0,L+)

and c(L0,L+) = c is the last row of L+.

The mapping between the structural parameterization and the IRF parameterization suggests that

Equation (1) can be rewritten in terms of the IRF parameterization as follows

y′
t =

p∑
ℓ=1

y′
t−ℓAℓ(L0,L+)L

′
0 + cL′

0 + ε′tL
′
0 for 1 ≤ t ≤ T.

Hence, in addition to the orthogonal reduced-form parameterization and the structural parame-

terization, a VAR can be written in terms of the IRF parameterization. Moreover, we have defined

the mapping fh from the structural parameterization to the orthogonal reduced-form parameteriza-

tion, and the mapping ϕ from the structural parameterization to the IRF parameterization. This

implies that ϕ ◦ f−1
h defines a mapping from the orthogonal reduced-form parameterization to the IRF

parameterization.

C Empirical Application: Estimation and Inference

Following Beaudry, Nam and Wang (2011) we consider four lags and use a normal-inverse-Wishart

prior distribution, NIW (ν̄, Φ̄, Ψ̄, Ω̄), for the reduced-form parameters. We set ν̄ = 0, Φ̄ = 0, and

Ψ̄ = 0 and Ω̄−1 = 0. We use the data set created by Beaudry, Nam and Wang (2011). This data

set contains quarterly U.S. data for the sample period 1955Q1-2010Q4 and includes the following

variables: TFP, stock prices, consumption, real interest rate, and hours worked. TFP is the factor-

utilization-adjusted TFP series from John Fernald’s website. Stock prices correspond to the Standard

& Poor’s 500 composite index divided by the CPI of all items from the Bureau of Labor Statistics

(BLS). Consumption is real consumption spending on non-durable goods and services from the Bureau
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of Economic Analysis (BEA). The real interest rate corresponds to the effective federal funds rate

minus the inflation rate as measured by the growth rate of the CPI all items from the BLS. Hours

worked correspond to the hours of all persons in the non-farm business sector from the BLS. The

series corresponding to stock price, consumption, and hours worked are normalized by the civilian

non-institutional population of 16 years and over from the BLS. All variables are in log percentages

except for the real interest rate, which is expressed in percentages. This choice of scale for the variables

seems to produce the most accurate results when approximating the volume elements.
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