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INDETERMINACY 
IN A FORWARD LOOKING REGIME SWITCHING MODEL 

 
 

I.  INTRODUCTION 
 
    Work by Richard Clarida, Jordi Galí and Mark Gertler (2000a) has stimulated 
recent interest in models where monetary policy may occasionally change between a 
passive regime in which there exists an indeterminate set of sunspot equilibria and 
an active regime in which equilibrium is unique. When the policy changes are 
modeled using a Markov process, the resulting model is inherently non-linear. 
    Papers in the literature on nonlinear rational expectations models typically 
compute a solution to functional equations using numerical methods, but not much is 
known about the analytical properties of these equations. Obtaining a complete set of 
indeterminate equilibria even for a simple MSRE model is a very difficult problem, 
and to the best of our knowledge there are no systematic methods to accomplish this 
task. 
    The distinction between the linear rational expectations (RE) model and the MSRE 
model is subtle but important and the conditions for existence and boundedness of a 
unique solution are different in the two cases. In this paper we study a simple 
Markov-switching model of inflation that combines two purely forward-looking 
rational expectations models. The first one has a unique determinate equilibrium and  
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the second is associated with a set of indeterminate equilibria. The MSRE model
switches between the two models with transition probabilities governed by a Markov
chain.

Within the MSRE environment we first establish conditions for the existence of
a minimum-state-variable equilibrium. We go on to discuss alternative definitions
of stationarity for non-linear models and we argue that mean-square stability is an
appropriate and appealing concept. We then show through a series of examples, based
on a one equation model, that there exists a set of mean-square-stable indeterminate
equilibria for large open sets of the model’s parameter values. Our results imply that
the existence of stationary and bounded indeterminate equilibria in MRSE models
is a pervasive phenomenon that cannot be ruled out in all regimes by the actions of
the policy maker in a single regime. The examples in the current paper demonstrate
that a uniqueness criterion proposed by Davig and Leeper (2007), the “generalized
Taylor principle”, holds in the one equation model if and only if the coefficient on
the government reaction function is restricted to be positive. In a companion paper,
Farmer, Waggoner, and Zha (2007), we show that the principle fails more generally
in multi-equation models.

II. The Model

Following Robert King (2000) and Michael Woodford (2003), we study a simple
flexible price model in which the central bank can affect inflation but not the real
interest rate. In this model, the Fisher equation links the real interest rate, rt, and
the nominal interest rate, Rt, by the equation,

Rt = Et [πt+1] + rt, (1)

where Et is the conditional expectation at date t and πt+1 is the inflation rate at date
t + 1. The central bank sets the time-varying rule

Rt = φξtπt − κξtεt, (2)

where ξt is a two-state Markov process with transition probabilities (pi,j) and pi,j is
the probability of transiting from state j to state i. The stochastic process {εt}∞t=1

is independently and identically distributed with zero mean and is independent of
{ξt}∞t=1. Substituting Eq (2) into Eq (1) gives the following forward-looking inflation
process

φξtπt = Et [πt+1] + rt + κξtεt. (3)

We assume that the real interest rate evolves exogenously according to

rt = ρrt−1 + νt, (4)

where |ρ| < 1 and {νt}∞t=2 is independently and identically distributed with zero mean
and is independent of {ξt}∞t=1 and {εt}∞t=1. The distributions of both εt and νt are
assumed to have a bounded support.



INDETERMINACY 3

III. Understanding Indeterminate Equilibrium

In this section we study a special case of the model for which φξt = φ and κξt = κ

for all ξt and rt = 0 for all t. This single regime, or constant-parameter, case helps
understand key characteristics of indeterminate equilibria and provides the economic
intuition that explains how indeterminate solutions in a completely forward-looking
model depend on past states, a phenomenon that is not commonly understood. For
this special case, Eq (3) can be written as,

πt =
1

φ
Et[πt+1] +

κ

φ
εt. (5)

Before answering the question of whether or not there is a unique solution of (3),
one must decide the properties that a solution will be required to have. At the very
least, one wishes to rule out explosive behavior. This can be accomplished in a variety
of ways, the most common of which are requiring solutions to be bounded in mean,
requiring solutions to be stationary, or requiring solutions to be bounded. Fortunately,
in the constant parameter case these are equivalent; that is, there will be a unique
solution that is bounded in mean if and only if there is a unique solution that is
stationary and if and only if there is a unique solution that is bounded. However, this
is not the case when there are multiple regimes. We will return to this phenomena in
subsequent sections. In anticipation of later sections, we will assume that solutions
are stationary. Since stationary processes are also bounded in mean, this implies
there is an M > 0 such that |Etπt+s| < M for all s and t.

How might one establish that there is only one stationary solution to the model?
Iterating Eq (5) forward for T periods leads to the following expression:

πt =
κ

φ
εt +

(
1

φ

)T

Etπt+T . (6)

When T = 1, this is simply Eq (5). Eq (6) can be shown to hold for all T via an
induction argument using the fact that Etπt+T = 1

φ
Etπt+T+1. Thus

πt =
κ

φ
εt + lim

T→∞

(
1

φ

)T

Etπt+T . (7)

Since Etπt+T is bounded, if |φ| > 1 it follows that

πt =
κ

φ
εt, (8)

is the only stationary solution. Following McCallum (1983), a the solution of Eq (5)
with this form is referred to as a minimal state variable (MSV) solution.
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If |φ| < 1 then Eq (8) is still a solution to Eq (5) but there are now additional
solutions of the form1

πt =
κ

φ
εt + wt, (9)

wt = φwt−1 + (mεt + γt), (10)

where m is any real number and {γt}∞t=2 is any bounded stochastic process with zero
mean that is independent of {εt}∞t=1. Solutions in this class are referred to as sunspot
equilibria following Cass and Shell (1983) who coined the term to refer to equilibria in
which the allocations in general equilibrium models may differ across states even when
all fundamentals are the same. Because φ < 1, these solutions will be stationary.

Why should we be interested in stationary sunspot solutions of the kind represented
by Eq (9)? These solutions have an important feature that qualitatively differs from
the MSV solution (8): πt is serially dependent. Thus either fundamental or sunspot
shocks will be propagated through this serial dependence; the inflation process will
be more persistent and volatile under the passive policy (|φ| < 1) than that under the
active policy (|φ| > 1). Therefore, in the indeterminate equilibrium monetary policy
tends to destabilize the inflation process, a point made by Clarida, Galí, and Gertler
(2000b), Lubik and Schorfheide (2004),and Boivin and Giannoni (2006).

IV. An Appropriate Equilibrium Concept

Much of the previous work on dynamic stochastic general equilibrium theory has
been concerned with constant parameter models. A typical way to proceed is to
specify preferences, technology and endowments and to make an explicit assumption
about the nature of the stochastic shocks. Sometimes it is possible to specify an
environment in which, in the absence of shocks, there exists a unique stationary
perfect foresight equilibrium. An example is the single agent real business cycle
model. When the stationary equilibrium is unique it may be possible to approximate
the stochastic rational expectations equilibrium by linearizing around the steady state
and solving for an approximate stochastic rational expectations equilibrium. For this
approximation to be reasonable, the stochastic shocks must be small. This is necessary
to keep the system close to the non-stochastic steady state, which is the only point
in the state space for which the linear approximation is exact.

The non-stochastic dynamics of a perfect foresight linear model are completely
characterized by the roots of the characteristic polynomial of a first order matrix
difference equation. When all of these roots lie within the unit circle, the stochastic
process is stationary and, as a consequence, it is possible to prove theorems which
assert that as the variance of the shocks goes to zero, the approximation error vanishes.

1An alternative way to express these multiple solutions is

πt = φπt−1 − κεt−1 + (m +
κ

φ
)εt + γt,

which is in the same form as in Lubik and Schorfheide (2004).
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One would like to prove a similar theorem for the Markov switching model but since
the model is inherently non-linear, this is impossible. To make progress with models
of this kind one needs an appropriate equilibrium concept different from that used for
linear RE models. Specifically, we will describe two different concepts: stationary and
bounded solutions. By a stationary solution we mean a process that is mean-square-
stable, a concept that we will define below, and by a bounded solution we mean one
for which all sample paths remain bounded.2

V. Determinate and Indeterminate Solutions and the Taylor
Principle

In single regime models there is a simple test for uniqueness that involves counting
unstable roots and nonpredetermined variables.3 Rational expectations equilibrium
is unique if the number of non-predetermined variables is equal to the number of
unstable roots. This root counting condition lies behind the Taylor principle; that
monetary equilibrium will be locally unique if the central bank follows a monetary
policy in which it raises the interest rate in response to inflation with a response
coefficient greater than one in absolute value.

In a related paper, Davig and Leeper (2007) have tackled the question of how to
think about indeterminacy in models of regime switching. Their idea is to find a
condition, similar to the Taylor principle, that applies to MSRE models. Davig and
Leeper define determinacy to mean the existence of a unique bounded solution to an
expanded stochastic linear RE system as

[
φ1 0

0 φ2

] [
π1 t

π2 t

]
=

[
p1,1 p2,1

p1,2 p2,2

] [
Etπ1 t+1

Etπ2 t+1

]
+

[
rt + κξtεt

rt + κξtεt

]
, (11)

where π1 t and π2 t are newly introduced random variables that follow the linear sto-
chastic process (11). By imposing the restriction that the interest rate coefficient of
the Taylor rule must be positive (φi > 0), Davig and Leeper (2007) correctly show
that the necessary and sufficient condition for the linear model (11) to have a unique
bounded solution for π1 t and π2 t is

Condition 1. All the eigenvalues of the matrix
[
φ−1

1 0

0 φ−1
2

] [
p1,1 p2,1

p1,2 p2,2

]
(12)

lie inside the unit circle.4

2The reader is referred to Costa, Fragoso, and Marques (2004) for a discussion of mean-square-
stability.

3As Sims (2001) points out, this test does not always work and the exact condition is more
complicated.

4Note that our transition matrix P is a transpose of the transition matrix in Davig and Leeper
(2007).
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It is a well known fact from the standard results for linear RE models that Condition
1 is valid no matter whether φi is negative or not (see, for example, Blanchard and
Kahn (1980), King and Watson (1998), and Sims (2002)). Thus, the restriction φi > 0

is unnecessary for the “generalized Taylor principle” stated in Condition 1 to hold.
By letting πt = πit when ξt = i for i = 1, 2, Davig and Leeper (2007) claim that

such a uniqueness condition applies to the original MSRE model (3) and call this
condition a ‘long-run Taylor principle’ or ‘generalized Taylor principle.’ If Condition
1 holds there exists a unique bounded equilibrium for the nonlinear model (3). If it
fails there may be multiple equilibria driven by non-fundamental shocks.

We have two criticisms of the Davig-Leeper result. First, we think the positivity
restriction is not merely for mathematical convenience, but rather an indication that
there does not exist in general an equivalence between the existence of a unique
bounded equilibrium for a MSRE model and the generalized Taylor principle derived
from the linear RE counterpart.5 Mathematically, since it follows from the standard
results that Condition 1 is valid no matter whether φi is negative or not, Davig
and Leeper’s generalized Taylor principle should apply to situations where φi < 0.
Economically, even if one believes that it is appropriate for a benevolent policy maker
to choose a positive value for the interest rate response coefficient to inflation in
the Taylor rule, one still cannot rule out the possibility that an incompetent or ill-
informed policy maker might react differently. Moreover, Rotemberg and Woodford
(1999a, Page 83) have shown that the optimal Taylor rule may involve a negative value
of this parameter. In Section IX we exploit the fact that one or more regimes may
be associated with a negative value for the inflation response coefficient to provide
an example where there exist multiple bounded sunspot equilibria even when the
generalized Taylor principle is satisfied.

Second, stationarity and boundedness are equivalent for the stochastic linear sys-
tem (11) on which the generalized Taylor principle is based, because we assume that
all the shocks are restricted to be bounded. But Condition 1 itself cannot distin-
guish stationary and bounded solutions and for the MSRE system (3) stationarity
and boundedness are not equivalent. Consequently, the two different RE systems (3)
and (11) cannot be equivalent.

VI. The MSV Solution

In a companion to this paper, Farmer Waggoner and Zha (2006) suggest MSV
solutions as a way to make progress in the study of MSRE models. In this section,
we define and find the MSV solution of (3). We also formally define the notion of
mean squate stability.

Because (3) is a purely forward looking system, the MSV solution of (3) is the
unique solution of the form

πt = gξtrt + hξtεt. (13)

5See Farmer, Waggoner, and Zha (2007) for a proof of this result.
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A solution of this kind may or may not exist. If we define

X =

[
φ1 − ρp1,1 −ρp2,1

−ρp1,2 φ2 − ρp2,2

]
, (14)

then the following proposition gives a necessary and sufficient condition for the exis-
tence of the MSV solution.

Proposition 1. There exists a unique solution of the the form of (13) if and only if
the matrix X is invertible. In that case,

[
g1

g2

]
= X−1

[
1

1

]
and hi =

κi

φi

. (15)

Proof. See Appendix A. ¤
In the light of this result, we assume that X is invertible and so the MSV solution

will exist.
Following standard usage in the probability literature on Markov switching models

(e.g., Costa, Fragoso, and Marques 2004), we define stationarity to be the existence
of limiting first and second moments.

Definition 1 (Mean Square Stability). A stochastic process {xt}∞t=1 is mean square
stable if there exist real numbers µ and ϕ such that

lim
s→∞

Et [xt+s] = µ,

lim
s→∞

Et [x2
t+s] = ϕ.

Mean square stability is stronger than being bounded in mean and it is the appro-
priate stability concept if one wants to conduct statistical inference. It is widely used
in the engineering literature and has been used in an economic application, among
others, by Svensson and Williams (2005). An alternative to mean square stability
is covariance stationarity in the sense of Hamilton (1994), or asymptotic covariance
stationarity – a slightly weaker condition. Asymptotic covariance stationarity implies
mean square stability, although the converse is not true in general. However, for the
class of solutions studied in this paper, Theorem 3.33 of Costa, Fragoso, and Marques
(2004) implies that these two notions are equivalent. Because of this fact, we will
refer to solutions that satisfy the mean-square stability criterion as “stationary”.

Proposition 2. If the Markov process {ξt}∞t=1 is ergodic, then MSV solution (13) is
stationary.

Proof. By assumption, the processes {εt}∞t=1, {νt}∞t=1, and {ξt}∞t=1 are independent and
the processes {εt}∞t=1 and {νt}∞t=1 are stationary. Since {ξt}∞t=1 is ergodic, it will also
be stationary. So, the processes {εt}∞t=1, {rt}∞t=1, and {ξt}∞t=1 will all be independent
and stationary. The result now follows from Eq (13) and Definition 1. ¤

In light of this proposition, we assume that the Markov process {ξt}∞t=1 is ergodic.
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VII. A Class of Indeterminate Solutions

Since the existence of a unique determinate solution is often viewed as a desirable
feature of a model (Rotemberg and Woodford 1999b, King 2000), we address the
question: Is the MSV solution (13) unique in the class of all stationary solutions?
Often the answer to this question is negative and we illustrate this point by first
constructing a class of indeterminate solutions that are bounded in mean. However,
only a subset of these will be stationary. This is very different from the constant
parameter case, where for solutions of the type we construct these two notions are
equivalent. These examples are instructive since they suggest that determinacy in
MSRE models is much more delicate than in the constant parameter case.

Consider the change of variables defined by

wt = πt −
(

gξtrt +
κξt

φξt

εt

)
. (16)

Since gξtrt +
κξt

φξt
εt is the MSV solution of (3), it is easy to see that πt is a solution of

(3) if and only if wt is a solution of

wt =
1

φξt

Et [wt+1] . (17)

While it is easier to work directly with wt, the reader should bear in mind that the
behavior of the inflation variable πt can be easily recovered from (16). Rearranging
(17), one obtains

wt+1 = φξtwt + ηt+1, (18)

where ηt+1 is the expectational error wt+1 −Etwt+1, which implies that Et [ηt+1] = 0.
On the other hand, if {ηt}∞t=2 is any mean zero process and w1 is any initial condition,
then (18) defines a solution of (17).

Consider the expectational error of the form

ηt+1 = αξt+1,ξtφξtwt + βξt+1 (mεt+1 + γt+1) (19)

where the αi,j must satisfy

p1,1α1,1 + p2,1α2,1 = p1,2α1,2 + p2,2α2,2 = 0 (20)

and the stochastic process {γt}∞t=2 has bounded support, is independently and identi-
cally distributed with zero mean, and is independent of {ξt}∞t=1, {εt}∞t=1, and {νt}∞t=1.
Condition (20) and the independence of γt+1 and ξt+1 ensure that Etηt+1 = 0. The
solution {wt}∞t=1 of Eq (17) defined by Eqs (18), (19), and any initial condition w1

will be of the form

wt+1 =
(
1 + αξt+1,ξt

)
φξtwt + βξt+1 (mεt+1 + γt+1) . (21)
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Theorems 3.33 and 3.9 from Costa, Fragoso, and Marques (2004) give necessary and
sufficient conditions for {wt}∞t=1 defined by Eq (21) to be stationary6. The conditions
only involve the coefficients (1 + αi,j) φj and the transition probabilities pi,j.

The solutions of Eq (3) given by Eqs (16) and (21) are exactly analogous to the so-
lutions of Eq (5) given by Eqs (9) and (10) in the constant parameter case. There are,
however, two important differences. The first is that the autoregressive parameter in
Eq (21) involves the a new parameter αi,j, which is not the case for the autoregres-
sive paramenter in Eq (10). So, unless a representation of αi,j in terms of the other
parameters can be found, we are faced with checking an infinite number of cases in
order to determine uniqueness. The second is that the notions of stationarity and
boundedness are both equivalent to the notion of bounded in mean for Eq (10), while
this is not true for Eq (21). Because of this, the researcher must take a stand on
which properties solutions are required to have.

In the remainder of this section, we apply these results to a specific example. First,
we characterize the kind of central banker that acts in each regime. The idea is that
the policy maker in regime 1 is an inflation hawk and the policy maker in regime 2,
an inflation dove. This implies that

|φ1| > 1 > |φ2| > 0. (22)

In line with the existing literature on the Taylor principle, we do not assume that
the inflation response coefficients, φ1 and φ2, must be positive. As in Section III, the
constant parameter model with φξt = φ1 has a unique stationary solution and the
constant parameter model with φξt = φ2 has a continuum of stationary solutions.

Next, define

α1,1 = −1, α2,1 =
p1,1

p2,1

, α1,2 = −1, α2,2 =
p1,2

p2,2

, β1 = 0, and β2 = 1. (23)

Note that this implicitly implies that both p2,1 and p2,2 are non-zero, or equivalently,
that the first state is not absorbing and the second state is not reflecting. The
solution {wt}∞t=1 of Eq (17) generated by Eqs (18), (19), an initial condition w1, and
the parameters αi,j and βi given by (23) will have the form

wt+1 =





0 if ξt = 1 and ξt+1 = 1
φ1

p2,1
wt + (mεt+1 + γt+1) if ξt = 1 and ξt+1 = 2

0 if ξt = 2 and ξt+1 = 1
φ2

p2,2
wt + (mεt+1 + γt+1) if ξt = 2 and ξt+1 = 2

(24)

6The corresponding solution of Eq (3) is

πt+1 =
(
1 + αξt+1,ξt

)
φξtπt −

(
1 + αξt+1,ξt

)
φξt

(
gξtrt +

κξt

φξt

εt

)

+ gξt+1rt+1 +
κξt+1

φξt+1

εt+1 + βξt+1 (mεt+1 + γt+1) .

The necessary and sufficient conditions for {πt}∞t=1 to be stationary are identical to those for {wt}∞t=1.



INDETERMINACY 10

This solution has the property that is switchs between the MSV solution in the first
state (the determinate state) and an autoregressive sunspot solution in the second
state (the indeterminate state). The following proposition characterizes the long-run
behavior of this solution.

Proposition 3. Let {wt}∞t=1 be the stochastic process generated by (24) and any initial
condition w1.

(1) {wt}∞t=1 is bounded in mean.
(2) {wt}∞t=1 is stationary if and only if

∣∣∣ φ2
1

p2,2

∣∣∣ < 1.

Proof. See Appendix B. ¤

Though we shall not prove it, it is also the case that {wt}∞t=1 is bounded if and only
if

∣∣∣ φ1

p2,2

∣∣∣ < 1. In the next section we further consider the properties of these solutions.

VIII. Stationary Solutions

In Sections VIII and IX we provide two examples of indeterminate solutions based
on the work in the previous section. The first example satisfies the mean-square
stability condition so that the solution is stationary. The second example satisfies
the more restricted Davig-Leeper definition of a stationary equilibrium for which the
stationary invariant distribution is bounded. In both examples, we show that the
generalized Taylor principle fails to hold.

Consider the process {wt}∞t=1 generated by (24) and any initial condition w1. Notice,
by Proposition 3, that the stationarity of our constructed sunspot equilibrium depends
only on the values of the parameters in the second regime and on the probability of
staying in that regime. Notably, it does not depend on the probability of staying in
the first (determinate) regime nor does it depend on the degree to which the inflation
hawk (the policy maker in the determinate regime) follows an active policy.

Our first example, illustrated in Figure 1, displays the MSV solution in the first
panel and the paths of inflation associated with two different sunspot equilibria in
the second and third panels. These two sunspot equilibria are associated with two
different parameterizations of the economy.

For both parameterizations we set ρ = 0.9, φ1 = 2.2, p1,1 = 0.98, and p2,2 = 0.995.
These parameter values correspond to monetary policy that would generate a unique
equilibrium if the first regime were treated in isolation. The parameterizations differ
by allowing alternative values of the interest rate coefficient in regime 2. In one case
we set φ2 = 0.9951 and in the other φ2 = 0.9949. In both cases monetary policy in the
second regime would lead to indeterminacy if the regime were treated in isolation.
With φ2 = 0.9951, however, the generalized Taylor principle of Davig and Leeper
(2007) implies that the MSV solution would be the only stationary solution. With
φ2 = 0.9949, their uniqueness condition as stated in Condition 1 is violated. However,
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Figure 1. Simulated paths of inflation (deviations from the target)
with φ1 = 2.2, p1,1 = 0.98, p2,2 = 0.995.

using the mean-square-stability criterion, the indeterminate solutions are stationary
in both cases.7

It is worth noting that the paths associated with the policies φ2 = 0.9951 and
φ2 = 0.9949 are hard to tell apart even though one violates the generalized Tay-
lor principle and the other does not. In both cases, inflation in the indeterminate

7We parameterize this example by setting εt to be N (0, 1) and νt to be N (0, 0.01), both truncated
at four standard deviations. The values of κ1

φ1
and κ2

φ2
are 0.4 and 0.2 so that the size of the

fundamental shock in the first regime is twice the size in the second regime. The initial condition
is π1 = g1r1 + κ1

φ1
ε1, or equivalently w1 = 0. All the paths are based on the same sequence of the

real interest rate rt and the same sequence of fundamental shocks εt. The non-fundamental shock
γt = 0 and m = κ2

φ2
. Therefore, in the indeterminate equilibrium the size of the random shock is the

same for both regimes. These assumptions allow us to isolate the effects of indeterminacy from the
the effects of different shock variances across regimes.
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equilibrium is much more persistent than that in the MSV equilibrium. This is con-
sistent with Clarida, Galí, and Gertler’s (2000a) interpretation of the U.S. data. They
attribute the serially-dependent and volatile behavior of inflation in the 1970s to in-
determinate monetary policy and the remarkable reduction in volatility and serial
dependence of the Volcker-Greenspan years to the successful application of a Taylor
rule that implements an MSV equilibrium. In both examples presented in Figure 1,
the stochastic process that describes equilibrium is stable around the steady state.
This is precisely our definition of stationarity for MSRE models.

IX. Bounded Solutions

In this section we discuss probability-one bounded solutions with bounded inputs
(shocks). For analytical clarity we set the real interest rate rt to zero and κξt = 1 in
(1) and consider the following model8

φξtπt = Etπt+1 + εt. (25)

For this model, there exists an MSV solution

πt =
εt

φξt

. (26)

Under what conditions, is this the unique bounded solution? The answer is not as
simple as that for the fixed-regime case studied in Section III. Consider the example
where we set φ1 = 24/9 and φ2 = −1/3 with p11 = 0.01 and p22 = 0.5. The policy
maker in the first regime is an inflation hawk, while monetary policy in the second
regime would lead to indeterminacy if this regime were absorbing. Since we assume
that the structural shocks {εt} are bounded, the indeterminate solution represented by
Eq (24) will be bounded as well. Hence, this example satisfies the uniqueness criterion
of Davig and Leeper (2007). Our example demonstrates that a positive value of φi

in both regimes is essential for this result to hold. This ad hoc positivity restriction
is not innocuous because Condition 1 holds no matter whether φi is negative or not
and because it rules out policies in which the coefficient of the Taylor rule is negative.

As argued before, under the expanded linear system (11) with bounded inputs,
stationarity and boundedness are equivalent concepts. Since there is no equivalence
between the expanded linear RE system (11) and the original MSRE model (3),
we work directly on the original nonlinear system and provide a general uniqueness
condition as follows.

Proposition 4. If the φ1 and φ2 are non-zero, the Markov-switching model represented
by Eq (3) has multiple bounded solutions if and only if at least one of the eigenvalues
of [|φ1|−1 0

0 |φ2|−1

] [
p1,1 p2,1

p1,2 p2,2

]

8Conditions for indeterminacy and determinacy for this model do not depend on the serial corre-
lation of rt and the value of κξt .
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is greater than or equal to one in absolute value.

Proof. See Appendix C. ¤
One can easily show that the condition in this proposition is the same as Condition

1 if and only if φi is restricted to be positive a priori. Since the uniqueness condition
for the expanded linear system (11) on which the generalized Taylor principle is built
is given by Condition 1, it follows that the two systems are not equivalent. It can also
be shown that these two systems are different even for the case of φi > 0, although
in this case the uniqueness conditions for bounded equilibria do turn out to be the
same.

X. Conclusion

We have shown in this paper that the distinction between linear and MSRE models
is important but its consequences for equilibrium are not well understood. We have
demonstrated that the properties of uniqueness, stationarity, and boundedness, even
for the simple MSRE model of monetary policy studied in this paper, are fundamen-
tally different from those of linear models.

For the one-equation example we have provided a necessary and sufficient condition
for the uniqueness of bounded equilibria in the MSRE model. Characterizing the full
class of equilibria in a general MSRE model remains a challenging task. We believe
that progress can be made by adopting the MSV equilibrium concept advocated by
McCallum (1983), as shown in a companion paper by Farmer, Waggoner, and Zha
(2006).
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Appendix A. Proof of Proposition 1

Substituting Eq (13) into Eq (3) we have,

φξt (gξtrt + hξtεt) = Et

[
gξt+1rt+1 + hξt+1εt+1

]
+ rt + κξtεt

= (p1,ξtg1 + p2,ξtg2) ρrt + rt + κξtεt

Gathering like terms we see that

(φξthξt − κξt) εt = 0

(φξtgξt − (p1,ξtg1 + p2,ξtg2) ρ− 1) rt = 0

The first equation implies that hξt = κξt/φξt and the second equation can be written
in matrix form as

X

[
g1

g2

]
=

[
1

1

]
,

where X is defined by Eq (14). This equation will have a unique solution if and only
if the matrix X is invertible. This completes the proof of Proposition 1.

Appendix B. Proof of Proposition 3

To prove Proposition 3, we apply the results of Costa, Fragoso, and Marques (2004).
They consider systems of the form

xt+1 = Γθtxt + Gθtωt.

If we define

xt = wt−1, θt = (ξt, ξt−1) , Γθt =
(
1 + αξt,ξt−1

)
φξt , Gθt = βξt

[
m 1

]
and ωt =

[
εt

γt

]
,

then Eq (21) is of the form required by Costa, Fragoso, and Marques 2004. Note that
the transition matrix of the Markov process {θt}∞t=1 is

Pθ =




p1,1 p1,1 0 0

0 0 p1,2 p1,2

p2,1 p2,1 0 0

0 0 p2,2 p2,2


 .

It follows from Theorem 3.35 and Theorem 2.9 that {wt}∞t=1 is bounded in mean
if all the eigenvalues of P ′

θdiag (Γi) are less than one in absolute value. For the αi,j

defined by (23), it is easy to see that this matrix has eigenvalues equal to 0 and φ2,
both of which are less than one in absolute value. Thus {wt}∞t=1 is bounded in mean.

It follows from Theorem 3.33 and Theorem 3.9 that {wt}∞t=1 is stationary if and
only if all the eigenvalues of P ′

θdiag (Γ2
i ) are less than one in absolute value. For the

αi,j defined by (23), it is easy to see that this matrix has eigenvalues equal to 0 and
φ2

2/p2,2. Thus {wt}∞t=1 is stationary if and only φ2
2/p2,2 is less than one in absolute

value.
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Appendix C. Proof of Proposition 4

To prove Proposition 4, it suffices to consider the existence of non-zero solutions of
the system

φξtπt = Etπt+1. (A1)

First we assume that (λ, u) is an eigenvalue-eigenvector pair of diag
(|φi|−1) P ′ with

|λ| ≥ 1. Define
πt = λ−tuξt

where ui is the ith coordinate of u. Since u is an eigenvector, at least one of the ui is
non-zero and so πt is not zero for all t. Since |λ| ≥ 1, πt will be bounded. We show
that πt is a solution of Eq (A1). Because diag(φi)u = λ−1P ′u,

φξtπt = λ−tφξtuξt = λ−(t+1) (p1,ξtu1 + p2,ξtu2) = Etπt+1.

So, πt is a non-zero bounded solution of Eq (A1). If either λ or u were complex, then
πt would be complex. However, both the real and imaginary components of πt would
be real solutions of Eq (A1) and at least one of these would be non-zero.

We now assume that there is a non-zero solution πt of Eq (A1). We show that
there is an eigenvalue of diag |φi|P ′ that is greater than or equal to one in absolute
value. Define vi = supξt=i {πt} and let v be the vector consisting of the vi. Because
πt is bounded, vi is finite. Because πt is a solution of Eq (A1), if ξt = j, then

|φjπt| = |Etπt+1|
≤ Et |πt+1| = p1,jEt [|πt+1| |ξt+1 = 1] + p2,jEt [|πt+1| |ξt+1 = 2]

≤ p1,jv1 + p2,jv2.

This implies that |φj| vj ≤ p1,jv1 + p2,jv2 or diag (|φi|) v ≤ P ′v. This is equivalent to
there existing numbers ci with 0 ≤ ci ≤ 1 such that

v = diag
(
ci |φi|−1) P ′v.

Because the elements of v are non-negative, as are the elements of the matrix
diag

(
(1− ci) |φi|−1) P ′, the elements of v1 = diag

(
(1− ci) |φi|−1) P ′v will also be

non-negative. Iterating the relation

diag
(|φi|−1) P ′v = diag

(
ci |φi|−1) P ′v + diag

(
(1− ci) |φi|−1) P ′v

= v + v1,

gives (
diag

(|φi|−1) P ′)k
v = v + vk

where the elements of vk are non-negative. If all of the eigenvalues of diag
(|φi|−1) P ′

were strictly less than one, then

lim
k→∞

(
diag

(|φi|−1) P ′)k
v = 0,
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which is a contradiction. Thus, there must be at least one eigenvalue of diag
(|φi|−1) P ′

that is greater than or equal to one.
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