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§0. INTRODUCTION

In this paper, we study homological and geometric
aspects of function spaces and especially loop spaces re-
lated to the classical unitary groups and their homogeneous
spaces. Most of the results here are homological, but as a

direct consequence, we give a product decomposition for
2 ,
Map, (IRP™,Q(SU(4) <3>))

where Map, (X,Y) denotes the space of pointed maps from X
to Y, and Y<j> denotes the j-connected cover of Y. It
should be indicated that neither QSU(4) nor stU(4) admits
a "non-trivial" product decomposition, although QZSU(4) is
homotopy eguivalent to SIXQ2(SU(4)<3>).

The above decomposition is related to Bott periodicity

via the fibration
QSg »> SU(4)<3> » SU(5)<3>

induced by the classical fibration

s? - BSU(4) - BSU(5)

Thus one obtains a fibration

Map, (RP%,02s%) - Map, (RPZ,Q(SU(4)<3>))

> Map, (RPZ,Q(SU(5)<3>)) .

Let Wrl denote the fibre of the double suspension

EZ: Szn—l_+9252n+l. We shall prove that there exist spaces

X and Y, together with a morphism of fibrations



1xk 2
WZXX WzXY Map, (IRP7,Q(SU(5) <3>))

lz . -

A4
Map, (RP?,0%5%) —>Map, (RPZ,Q(SU(4)<3>)) —>Map, (RPZ,Q(SU(5)<3>))

where all spaces are localized at 2 and the vertical maps
are homotopy equivalences. Thus one obtains a product decom-
position of Map*GRPz,Q(SU(4)<3>)) such that one of the fac-
tors is both familiar and classical.

An immediate application to homotopy theory is a
direct sum decomposition of the mod-2 homotopy groups of
59 and SU(4). Recall that vq(X,Z/p)= [Pq(p),X]* where
Pq(p)==Sq_l Up e9. From the above decomposition we obtain

a commutative diagram where the vertical maps are isomor-

phisms,

Wq(QSg;Z/Z)—————>Wq(SU(4)<g>;Z/2)

and thus the horizontal map is split on the W*WZ summand .
2 5

A product decomposition for Map, (IRP7,0S7) was given
in [ 41, and a related one for Map, URPz,stg) was given in
[ 7]. 1In particular, Map, CRPZ,QSB) is homotopy equivalent,

2,.3

at the prime 2, to W 2><Q (S°<3>). This decomposition follows from

our results. Also our computations suggest that there may be



other decompositions of function spaces involving the
special unitary groups, though one may have to consider
function spaces whose source is different from]Ron

The main results here consist of homological computa-
tions. We compute the mod-p homology of the double and
triple loop spaces of the special unitary groups and their
homogeneous spaces. The Bocksteiln spectral sequences are
analyzed to give integral homology. For example, the
2-primary component of the integral homology of QZSU(3)
consists entirely of %Z/4 summands. In addition, the mod-2
homology of the double loop spaces 1is given as a
Hopf-algebra over the Steenrod algebra. Spherical homology
classes related to the first unstable element in the homotopy
of SU(n) play an important role. Their Hurewicz image in

the homology of the iterated loop spaces of SU(n) is given.



§l. STATEMENTS OF MAIN RESULTS

Recall that Wn is the fibre of the double suspension

g2, g2n-1l, 2520+l

Theorem 1.1. There exist non-trivial spaces X and Y, and

a 2-local homotopy commutative diagram,

2
WZXX “WZXY Map, (IRP™, & (SU(5)<3>))

nap, (RPZ,02s%)—> Map, (RP?,2(SU(4)<3>))—>Map, (RPZ,Q(SU(5)<3>))

where the vertical maps are homotopy equivalences.

That Map, HRPZ;stg) is a non-trivial product was

proven in [ 7 ]. Using Theorem 1.1 we reprove a theorem
given in [4 ] which is a 2-primary analogue of Selick's
Theorem [ 12,13 ].

Theorem 1.2. Localized at the prime 2, Map, URPZ,QSS) is

homotopy equivalent to w2x92(53<3>),

An immediate consequence of Theorem 1.1 is

Corollary 1.3. There is a commutative diagram

18k
X ——ts g W, D Y
g-3 2 g-

® 3

W2 Wq_3
ng

where the vertical maps are isomorphisms.

Wq_ 3

Wq( ;Z/2)————~>ﬁq(Q(SU(4)<3>);%/2)



An important ingredient for these product decomposi-
tions is the existence of spherical homology classes arising
from the first unstable homotopy group of SU(n), which
itself is traced to Bott periodicity. To do this, we first
give the structure of H*(QZSU(n);Z/p) and
H, (0> (SU(n) <3>) 1Z/p) .

It is convenient to index the algebra generators by
the Dyer-Lashof operations and the Bockstein homomorphism.

Recall that if X is a (n+l)-fold loop space, there are

operations

Qi(p—l) : Hq(X;%/p) ) (X;Z/p)

> Hogti (p-1

defined for 0O<is<n when n=2 and for 0<is<n, i=g mod 2 when

p>2 [6]. The symbol Qi denotes the iterated operation
Q, - Qi . We denote the mod-p Bockstein by B.
|—a—times

Remark 1.4. SU(n) is homotopy equivalent to OBSU(n) and

SU(n) <3> is homotopy equivalent to Q2((BSU(n))<4>). We iden-
tify SU(n) with QBSU(n) and SU(n)<3> with 2((BSU(n))<4>) and
shall henceforth consider SU(n) and SU(n) <3> as loop

spaces. In particular, this implies that Q2(p—l) and

. . 2
Q3(p—l) are defined in H,(Q7SU(n);Z/p) and

H*(Q3(SU(n)<3>);Z/p), respectively.



When describing H, (QZSU ) :Z/p) and H*(Q3(SU(n)<3>);z/p), we give

the cases p=2 and p>2 separately. The notation |x| is used to denote
the dimension of x. P[¢] and E[+] denote polynomial and exterior al-
gebras, respectively. [x] denotes the greatest integer less than or

equal to x.

Theorem 1.5. Let n>l. There are choices of primitive ele-

ments x; and ¥; in H, (stU ;Z/p) where

’X.[ = 2i-1 , 'yl,O[ = 2pl—2 7

and H*(stU(n);%/p) is isomorphic to one of the following

Hopf algebras:

(1) Let p=2.

E{bixi1 a0, l<ic E%;q, iz0 mod 5}
|- |

Qp|0%x. | a0, n-1 <i<n-1, 10 mod 2

__l i __2__ |

@P{biyi()lazo, n;l <1<n-1, 1z0 mod 2
14

(1i) Let p>2.
E{é?p—l)xil a0, ls<isn-1, 1%#0 mod 5}
®P{%Q (p-1) ;1 a>0, {é:£1< i<n-1, i¥0 mod

®P(b2p 1Yy O]a>0 [ w -1, i=0 mod

The Bockstein spectral sequence for H*(stU(n);Z/p) is analyzed

[ el

[ Hol

in Proposition 1.18. A complete description of the Dyer-Lashof oper-
ations and the action of the Steenrod algebra in H*(QZSU(n);Z/2) is

given in Propositions 1.12 through 1.14.



Recall that if n<p, then localized at p, SU(n) 1is

homotopy equivalent to 53 % ven «s?P~1 [11,1571. Thus

H, (2°(SU(n) <3>) ;Z/p)

Q3821‘1-1

« H,(035%2/p) 85, (2°57:2/p) ® ++ - O H, /2/p)
For n>p we have the following theorem.
Theorem 1.6. Let n>p. There are choices of elements u,
uiandxﬁ Oin H*(QB(SU(n)<3>);Z/p) where
4
lu| = 2p-2 , \ui\ = 2i-2 , Ivi,O' = 2pi-3 ,

and H*(QB(SU(n)<3>);%/p)is isomorphic to one of the follow-

ing algebras:

(1) Let p=2.

[ ] . -1 .
P\qu ]azg:®Eﬁ§§ui| az0, 1<i < E%f}, 1$O mod {J

A

®P§7QiQ];ui | a,b=0, Fl;ﬂ <isn-1, i%0 mod ﬂ

a b n-1 . .
®PEQ1Q3VLO | a,b=0, {:21 <i<n-1, 1=0 mod 2_



(1i) Let p>2.

P[Qg(p_l)u | azO] ®P@;(p-l)ui | a20, l<i<n-1, 1i%¥0 mod E{]

a b n=1 .
®Eﬂ?(p-l)BQ2(p-l)uil az0, b>0, [EDJ <1<n-1,

i:(0 mod é}
a b . n-=1 . ]
®P[}Q(p-l)BQ2(p-l)uil a,b>0, EE;: <1i<n-1,
i$0 mod 51
a b n-1 . .
®EEg(p—l)Q3(p—l)vi,O | a,b>20, [p] <1i<n-1, iz0 mod g]
-1 b n-1 . _
®P[BQ(P-1)Q3(p-1)Vi,O | a>0, 020, [p] <isn-l
1=0 mod 5}

Remark 1.7. H*(Q3(SU(n)<3>);%/p) is not generally primitively gen-—

erated. In particular, the generators of the form ukp+l cannot be
chosen to be primitive. Thus for n>p+l, H*(Q3(SU(n)<3>);%/p) is not

primitively generated; however, H*(Q3(SU(p+l)<3>);Z/p) is primitively

generated. If n<pt+l, then H, (2°(SU(n)<3>);Z/p) is primitively gen-

erated if and only if pz2.

Let ¢ qu-+Hq(X;%) denote the Hurewicz homomorphism,
and o: Hq(X;%)—»Hq(X;Z/p) the mod-p reduction map. Let ©
denote the composite ped. In the next theorem, we give

3

information on the image of ¢ for QZSU(n) and Q7 (SU(n) <3>).

Theorem 1.8. The following elements are in the image of ©o.

(1) If ni0 mod p, then BQZ(p_l)unezHzpn_3(Q3(SU(pn)<3>;Z/p)
and thus, by suspending, BQ(p_l)xneszpn_2(stU(pn);%/p) are

in Im ©&.



.. _ 3
(ii) If n=0 mod p, then Vh,O€H2@r3(Q

. 2 .
thus, by suspending, yh,OGHZQ?Q(Q SU(pn) ;Z/p) are in Im 0.

(SU(pn) <3>) ;Z/p) and

Theorem 1.8 plays a crucial role in our decomposition
theorems above and our homology computations. A related

theorem is given by the following.

Theorem 1.9. Let n=Jj-1 mod p for l<j<p. If 2n>kz2j, then

(2" (su(n) <k>) :Z/p)

there exists a non-zero element in H2n-k

which 1is in Im ¢.

The first unstable homotopy group of SU(n) is
w2nSU(n)==%/n! [16]. Let u: 52n=+SU(n) be a generator of
this group and denote by uj the adjoint of u,
uj: s27=3 , oJsy(n). Theorem 1.9 gives a partial answer to
the question of how large we must choose j in order for pj
to have a non-trivial image under . In particular, if
n = j-1 mod p where 1<j<p, then uzj has non-trivial image
under ®. In the cases of n=0or 1lmodp, this answer is
best possible.

Next we describe the mod-p homology of the double and

triple loops of the homogeneous spaces SU(n)/SU(m) . The

following sets of integers are used as indexing sets:
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me<ics Eégq and 10 mod p or

Ap(n,m) = ek m< i min{p(m—l),E%?%} and

1=0 mod p

IN

in

n-1 and

[ [n-]ﬂ} .
maX\m=l, _— <1
P
i£0 mod p or
B _(n,m) = { ic¢Z

p e 2] <
maxsm=1, | —— <1
P

IN

min{p(m=1) ,n-11}

and 120 mod p

i <n-1 and

=}
o)}
%
—~
el
3
I
=
3
ol
B
—
N

C_ (n,m) = 1e¢Z
2 1i=0 mod p

Theorem 1.10. Let l<m<n. There are choices of primitive

elements X and Yi 3 in H*(QZ(SU(n)/SU(m));%/p) where

; a+1l.
‘Xi\ = 21-1 , 1Yi,a~ = 2p i-2,

and H*(QZ(SU(n)/SU(m));Z/p) is isomorphic to one of the

following Hopf algebras:
(1) Let p=2.

E[Qixi\ a0, i<A.(n,m]

2

f@P[Qixi\ az0, i« Bz(n,m)]

QP [y | 220, i<C,(n,m)]

i,a
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a .
E[Q(p_l)xl\ a0, ie¢ A _(n,m) u B_(n,m)]
<8P[BQ( l)Xi' a>0, 1e¢ B_(n,m)]
@P[yi,a\ a>0, 1ic¢ Cp(n,m)]
Theorem 1.11. Let 2<m<n. There are choices of elements Uy
and v, _ in H,(2°(SU(n)/SU(m));2/p) where
o _ a+l. _
ju; | = 2i-2, \vi,a‘ = 2p° "i-3,

and H, (0°(SU(n)/SU(m));&/p) is isomorphic to one of the

following algebras:
(1) Let p=2.

| a20, i Ap(n,m)]@P[Q‘i‘qui 2,520, icB (n,m]

a .
QDP[lei’b | a,b20, i« Cp(n,m)]

(1i) Let p>2.

P[Qi(p—l)ui‘ a0, 1« Ap(npm)LJBp(n'm)]

a b .
<8E[Q(p-l)BQ2(p—l)ui | az0, b>0, lc_Bp(n,m)]

a b .
®P[BQ(p_l)BQ2( )ul \ a,b>0, l:Bp(I’l,m)]

p-1
QE[

a .
Qp-1)Vi,b la,b20, ie Cp(n,m)]

@p[g@?p_l)vi,b | a>0, b20, icC (n,m]
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A partial description of the Dyer-Lashof operations in
H*(stU(n);%/Z) and H*(Qz(SU(n)/SU(m));X/Z) was given in
Theorems 1.5 and 1.10. The following two propositions, to-

gether with the Adem relations, complete this description.

Proposition 1.12. Let n>l. Then in H, (2%SU(n);Z/2)

_ _ a
Qx; = 0 =095,

i
Let n>m>1. Then in H*(Qz(SU(n)/SU(m));Z/Z)
Qlyi,a =0
Proposition 1.13. Let n>m2l. Then the Browder operation
A, in H, (22 (SU(n)/SU(M):2/2) and A, in H,(27SU(n)2/2)

are trivial.

Next we consider the action of the Steenrod algebra in

H*(QZSU(n);%/2).

Proposition 1.14. The action of the Steenrod algebra on

H*(QZSU(n);%/Z) is determined by the Nishida relations and

the following formulas.

| 25+
(1) Sq*] lxi =0
sq?Ix, = (i-23-1,3)03%, where i-3=2%, k0 mod 2

(ii) Sq,{yi,o =0 if j %0mod4
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(i-23,3)y;_5 o 1i-3=0 mod 2, i-j>

l o]
N
(L

Sqijyi,0= (1-23,3) (x;_5)° i-3 %0 mod 2, i-3>

(]

2

o]

!

0 otherwise

Proposition 1.15. Let j: SU(n) - SU(n)/SU(m) be the natural

quotient map. Then sz*: H*(stU(n);Z/2)+

H*(QZ(SU(n)/SU(m));%/Z) is given by the following formulas.

2 Xi izm
(1) %9, (x.) =
i .
0 i<m
yi,a Z(m‘j-) < 1
.. 2. a a 2 .
(i1) §2]*(Q2yiﬁﬂ = (lei) m-1<i<2(m-1)
0 i<m=-1

Note that the only generators of
H*(QZ(SU(n)/SU(m));%/Z) not in the image of sz* are those
of the form Qixi for 1 =0 mod 2. Thus to compute the
action of the Steenrod algebra on H*(QZ(SU(n)/SU(m));%/Z),
it suffices to compute the Steenrod operations on the ele-

ment X where 1 =0 med 2.

Proposition 1.16. Consider xieH*(Q2(SU(n)/SU(m));Z/Z)

where 1 =0 mod 2. Then
quj+lxi =0
. [ (1-273,3)%x., . 1-J=2m
2 i-
Sq*jxi = % ]
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The action of the higher Bocksteins is given in the

following proposition.

Proposition 1.17. Let l<m<n. Let sn(i)==s be such that
s=1; <n<p°i. The differentials in the Bockstein spectral

sequence for H*(QZ(SU(n)/SU(m));%/p) are given by:

P

(i) Let 1 eAp(n,m)tJBp(n,m) and 0 §a<<sn(i). Then

N _ 1
B (Q(p-l)xi) 0 for all r.

(ii) Let i« Bp(n,m) and azl. Then

1, .a _ a
S o1y ¥y T80 (o1 Xy
- . . - r, .a _
(iii) Let 1« Ap(n,m) and a = Sn(l). Then B (Q(p-l)xi)—BO
for r<<sn(i). Thus BS is defined and
s, .a
BT (Q, _\X:) =Y L_
(p=1)"1 ps li,a—s

From the action of the higher Bocksteins in the mod-p
homology of stU(n), we obtain the following corollary con-

cerning the p-torsion in H*(Qz(SU(n)/SU(m));Z).

Corollary 1.18. Let s and n be such that ps_lm<<nf£psm.

Then pS annihilates the p-torsion in H*(Qz(SU(n)/SU(m));%),

but ps_l does not.
Example 1.19. The 2-torsion in H*(QZSU(B);Z) is a direct

sum of Z/4-summands. The 2-torsion in H*(QZSU(4);%) is a

direct sum of Z/2- and Z/8-summands.



§2. PRODUCT DECOMPOSITION OF FUNCTION SPACES AND
PROOFS OF STATEMENTS 1.1-1.3
In this section, all spaces are localized at the
prime 2. To prove statements 1.1-1.3, we shall construct
maps h: QZ(S3<3>)—*Map* CRPZ,QSS) and f: W, > Map, CRPz,QS5)

with the following properties. h, 1s non-zero on Hz(-,%/Z)

and f, i1s non-zero on HS(G;Z/Z). Denote by vy the composite
Q‘(s3<3>)xw2—h£—>Map* (1RP?,08°) x Map, (mP?, 05°)
multiply 2 5

> Map, (RP™,0S7)

Theorem 1.2 follows at once from the existence of these

maps, together with the following two lemmas.

Lemma 2.1. Let f: X~ Map, CRPz,Qszn+l

) be a map which in-
duces a mod-2 homology isomorphism on the module of primi-
tives in dimension 2n-2 and 4n-3. If the mod-2 homology of

2 Qs2n+l

X is isomorphic to that of Map, (IRP, ) as a coalgebra

over the Steenrod algebra, then f, is an isomorphism.

Lemma 2.2. (i) The mod-2 homology of QZSB<3>XW is iso-=

2
morphic to that of Map, CRPz,QSS) as a coalgebra over the
Steenrod algebra.

(ii) Yy induces an isomorphism on the module of primi-

tives in dimensions 2 and 5.
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Lemma 2.1 is proved in [3] and Lemma 2.2 is proved

in [4]. Next we construct the maps h and £f.

Consider the cofibration

Sl [2] S:L IRP2

where [2] is the degree 2 map. By applying Map,(-;X) to

this cofibration we obtain the fibration

X —2— X Map, (RPZ,X)

where 2 is the H-space squaring map, [ 14, p.97]. Let
[A,B] denote homotopy classes of maps f: A~>B. If felY,iX]

has order 2, then the composite

Y-—£—>QX

2
v
QX

is null., Thus £ 1lifts to Map, CRPz,X).
52n+1_* S4n+l.

Consider the Hilton-Hopf invariant H2: Q Q

The following lemma is useful in the construction of both

h and f. A proof of this result is given in [5].

Lemma 2.3. QH, has order 2 in the abelian group

2

st2n+l,Q2S4n+l] and thus there is a 1lift of QH2 to

(
2 S4n+l

Map, (IRP™,Q Y. Furthermore, this 1lift induces an iso-

morphism on H (=:Z/2) .

in=-2
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CONSTRUCTION OF h: By Lemma 2.4, there is a 1lift of

oH.: 0283+ 0% to Map, (]RPZ,QSS), Let
h: st3<3>—>Map* CRPZ,QS5) be any choice of this 1lift re-
stricted to QZS3<3>. By Lemma 2.4, h, induces an isomor-

phism on Hz(-;%/2).

CONSTRUCTION OF f: The map f is defined as the composite

£
W, > Map, (RPZ,02S°)

02 c

2.9 £4 2

Map, CRPz,Q S”) ——— Map, (IRP”,Q(SU(4)<3>))

where 95 is defined in [4] and also below.

Consider the following diagram

Q

o
W —-—--—9;-—-9Map* CRP2,QZS4H+1)
S2n—l -
52 l
2g2n+l___ B nap, (mP?,asiPt

where E2 is the double suspension and h is a choice of 1lift

of QH,: Q

2

252n+l_+9254n+l as in Lemma 2.4. The columns are

fibrations and the solid square homotopy commutes since

Ton-

1

2 S4n+l

Map, (IRP7,Q ) = 0. Thus there exists a choice

of map o, making the above diagram a morphism of fibrations.
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Lemma 2.4. The map (On)* is an epimorphism on H4n_3(w;%/2)u

Proof: By the long exact sequence in homotopy for the

Q254n+l_*QZS4n+l, Map, CRPZ,QS4H+1

Map, (RP?,qsiPtl

fibration 2: ) 1is
(4n-3) -connected and 7

(Map, (RPZ,0s%0*L

ine2 ) = %/2. Thus

):Z/2) =%Z/2. In the Serre spectral

Han-2
1l = - 2 in+1
sequence for the path space fibration of Map,(IRP™,1S

.+=
generator of H4n_2(Map* URPZ,QS4n l);Z/2) must transgress

4 , —
(Map, URPZ,QZS'H+1);Z/2). Since h,

), the

to the generator of H4n-3

is non-zero on H (-:Z/2), there is an element y in

4n=-2
2.2n+1 . = .
(Q°s :%Z/2) whose image under h, is the generator of

Hyn-2
2 S4n+l

H4n_2(Map*,CmP , Q ):;%Z/2). By naturality, y must trans-

gress to an element in H4n_3(Wn;%/2) whose image under (On)*
2 254n+l

is the generator of H4n_3(Map* (RP™,Q ):%Z/2). Thus
(on)* is an epimorphism on H4n-3(_7%/2)‘ U
. +
Next we define in: Map, Csz,stzn l)
Map, URPz,Q(SU(n)<3>)). Consider the classical fibration

o
g2ntl __ N . psy(n) ———>BSU(n+1)

The map Sy is used to define En and has many applications

in subsequent sections. For j < 2n, let

3, S2n+l
n

67

- (BSU(n))<j> be a 1lift of oy to j=-connected

covers. For j in this range, it will cause no confusion

to denote ug simply by

Ie)

By the long exact sequence 1in

homotopy for the above fibration and the fact that
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w2n+1BSU(n+l)= 0, a, is a generator of W2n+lBSU(n)a The

map in is the map obtained by applying Map, CRPZ,w) to
2

Yo O
ﬂ252n+1———n—->§2(SU(n) <3>)

5

To define z: Map, CRPZ;Q(SU(4)<3>))-+Map* URPz,QS )

note there is a strictly commutative diagram

SU(2) — > SU(3) > S

Sp(2) ————>SU(4) —— 55U (4) /Sp (2)

where all the rows and columns are strict fibrations and
Sp(n) denotes the symplectic group. Thus SU(4)/Sp(2) is
homeomorphic to 55. Denote the restriction of g to

SU(4)<3>by g. Then ¢ is defined to be the map obtained by

applying Map, CRPZ,—) to

o=

Jbg
Q(SU(4) <3>) ———> 08>

We will show that (co£4)* is non-zero on HS(-;Z/Z).

The following two lemmas are used in the proof of this fact.

Lemma 2.5. Consider the natural maps 1: SU(3)<3>->SU(4)<3>

and p: SU(3)<3>>S°. Then

. 3, _ .
(l) Q3l*<V2,0) - vzlo ’
(ii) @ p*(vzlo) z 0
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Lemma 2.6. Let A: 9385-*Map* CRPZ,QSS) be a choice map in-

duced by the fibration

2
Map, (IRPZ,0S°) n%s> n%s?

Then X, is a monomorphism.

Lemma 2.5 follows from more general results proved in

Section 5 and Lemma 2.6 1is proved in [31].

Lemma 2.7. The map (co£4)* is non-zero on H5(=;Z/2)°

Proof: Consider the homotopy commutative diagram
3- 4
Q7ge o
Q489 4 N Q385
| ,\
2.9 oty Y2 .5

Map, (RP?;0%s”) ——= > Map, (RP“,08°)

By Lemma 2.6, A, is a monomorphism. Thus it suffices to
show that (Q350Q4u4)* is non-zero on H5(—;Z/2). By

Theorem 1.6,

H*(Q3(SU(3)<3>);%/2) = P[qu\ a20]€>P[QiQ€v2A)|a;bZO]

and

3

H, (Q7(SU(4)<3>);2/2)

b

= Ploju | az0] ®P[Qfo%v, | a,b20] ®P[Qngu3 | a,b>0]

By Lemma 2.5, R°i,(v, ;) =v, o where i: SU(3)<3>~SU(4)<3>
14 1

and 2%, (v, ) 20 where p: SU(3)<3>~5°. Thus 27§,(v, )) #0.

2,0 V3,0
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By Theorem 1.8, the image of (Q4a4)* is generated by vy o
-3

This implies that (Q 509434)* is non-zero on HS(—;Z/Z), U

By Lemmas 2.4 and 2.7, £, is non-zero on H5(~;Z/2)o

This completes the construction of £.

Having constructed h and f with the required properties,

we assume that the map

Y Q2(83<3>)XW2——L—9Map* CRPZ,QSS)
is a homotopy equivalence. The proof of Theorem 1.1 is
given next.

. 2 2.9
Proof of Theorem 1l.1l: Since the mmp£4: Map, (IRP™,0Q°87) -~
Map, URPz,Q(SU(4)<3>)) in the factorization of f arises from
the fibration
~2
2 9 AJOL4
Q787 — > Q(SU(4) <3>) > Q(SU(5) <3>) ,

there is a homotopy commutative diagram where the rows and

columns are fibrations.

o3}
e}
-
N
<
[0}
w

/

o

%]
o
A\
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The maps 61 and 82 are defined by the commutativity of
the following diagram:

, g g
Map, (RPZ,025%)—%map, (RP?,2(SU(4) <3>)) —>Map, (RPZ,0S°)
S

61 2 projection

X is the homotopy fibre of Sl and Y is the homotopy fibre

of 62, Since el and 62 have a cross-section given by

o I3 .
wz—iZ-»Map* (rpZ, 08%) —SMap, (RPZ,0(SU(4)<3>))

there is a homotopy commutative diagram

>

W, X W, oY ————ee— > xxliap, (IRF7,0(80(5) <3>))
| T -
| i H
| | |
i,
! | I
2 .2.9,2 2 ey , 2 2 , 2
3D, (RP STy "——Map, (IRP",Q(8U(4) <3>)) " ~—> tlap, (EP7,0L(EU(3)<3>))~
a | ‘
| ? !
Imultiply jmultipl multipl:
| ; {
N
2 2.9 2 2 . 2
ap,. (IRD S7) — lMap, (RP°.0(SU(4)<3>)) —— iap, (RP7,0(8U0(3)<3>))

where the rows are fibrations and the vertical composites
are isomorphisms in homotopy. Thus the vertical composites
are homotopy equivalences since all the spaces are

connected. [J

Corollary 1.3 follows from Theorem 1.1 and the follow-

ing lemma.
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Lemma 2.8. If g=n, then vq(X;Z/p) is isomorphic to
nq_n(Map*(Pn(p) , X)) where Pn(p) = Sn=l Up e,
Proof: [X,Y], denotes homotopy classes of based maps X~Y.
Recall that 7 (X,2/p) = (% (p),x]1,. But
ﬂq_n(Map*(Pn(p) ,x)) = (8977 Map, (PT (p) ,X) 1, =
(s A P (p),x1, = [Pe(p),X],. O
Remark 2.9. Notice that there is a fibration
s3> - su(5)/sp(2) + s°
Let 5: ng —>S5 be a choice of map induced by the above

5

fibration. The map f: WZ->Map* (IRPz,QS ) defined above

is homotopic to the composition

2
O, 5 o Map, (IRP™,00) 5

Wz—————> Map, (]RPZ,Q s7) ‘I\iap*(IRPZ,QS ) .

The advantage of defining £ as we did is that we easily

obtain the product decomposition of Map, (IRPZ,Q(SU(4)<3>))

as well as the product decompositions for Map, (]RP2,Q259)

and Map, (IRP’Z,QSS) .



§3. SPHERICAL CLASSES IN THE mod-p HOMOLOGY OF
Qk(SU(n)<k>) AND PROOFS OF STATEMENTS 1.8

AND 1.9

520+l | (Bsu(n))<k> for

In Section 2 we defined o
k< 2n and it was shown that o, was the generator of

(BSU(n))<k>. We show that if j-1=n mod p and 1<J=p,
92j+ls2n+l

Ton+1

then (Q2]+la

et Hyl 18/p) ~ 1, (227 (5U(n) <23>) ;2/p)

is non-zero in dimension 2n-2j. Thus

Qk+la ‘k+lSZn+l k

( o)t He (D ;Z/p) » H,(Q (SU(n)<k>);Z/p) is

non-zero in dimension 2n-k if 2n> k=2 2j. Theorem 1.9, on

o

the existence of spherical classes in H, (G (SU(n)<k>):Z/p)

follows from this statement.

By Bott periodicity, sz“l(SU<2j=l>) is homotopy

equivalent to QSU, [1]. Thus H*(sz_l(SU<2j—l>);%/p) is
isomorphic to P[wz,w4,w5,...] and the diagonal is given by
r
AW, = SEO w2sébw2(r_s) where wO==l, Furthermore, the
23-1 23=1

natural map of Q@ (SU(n+1)<2j=1>) to Q (SU<2j-1>) in-

duces an isomorphism in dimensions < 2n-23j+2. A well-known
calculation [ 8] shows that a basis for the module of primi-

29-1

tives in H,(Q (sU<2j=-1>);Z/p) 1is given by the Newton

polynomials, which we denote by WZr for rzl. @Zr is defined

r=-1
inductively by W, =W, and w2r==rw2r--szl w2sw2(r—s)'
Assume that j-1=n mod p and 1l<js<p. Then
23-1 L . .
PHZn—2j+2(Q (SU(n+l) <23j=-1>) ;Z/p) is generated by

24
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Let p: SU(n+l)<2j=l>-*S2n+l

Wo(n-9+1) 1 YWos¥2 (n-j+1-s) °

be the canonical fibration. Since sznlp* applied to W, OF

)] o]
I o~—1 1)
.

w is zero for 1l <s<n-j,

29-1

2 (n=j+1-s)

sz“1 (Q (SU(n+1)<2j=1>);:Z/p)) = 0.

Px (PHyp 2542

By applying the Serre spectral sequence to the mor-

phism of fibrations

sz+;52n+l 5 % Q2j52n+l
023 (sU(n) <23-1>) 2023 (sU(n+1) <25-1>)—>02Ig?ntL

. . 23 s,
there is an element z 1in H2n-2j+l(Q (SU(n+1) <23=1>);Z/p)

such that szp*(z) #0 1if and only 1if

29+1 23+1.2n+1, _ .
(Q ) 2n-2j(g S :%Z/p)) = 0. But if such a z

exists, then oz is primitive with non-zero image in

. 23=1.2n+1 : . .
ﬁ2n—2j+2(Q S ;Z/p), where o is the homology suspension.
By the above paragraph, this cannot occur, so sz+la* is

non-zero on HZn_zj(—;%/p). Thus Theorem 1.9 follows.
The special case j=2or 3 of the above is of interest
in the homology computations that follow. This is recorded

in the following corollary.

Q352pn+l 2

Corollary 3.1. The maps Q3&pn > Q°SU(pn) and

4 . o4.2pn+l 3
Q apn’ QS - Q

and Hzpn_B(—;Z/p), respectively.

(SU(pn) <3>) are non-zero on H2pn~2(—7%/p)
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Recall that Theorem 1.8 specifies that certain ele-
ments in H*(QZSU(H);Z/p) and H*(Q3(SU(pn)<3>);%/p) are in

the image of &. This follows at once Corollary 3.1 and the
L 2
descriptions of H, (Q"SU(pn);Z/p) and H*(QB(SU(pn)<3>);Z/p)

given in Theorems 1.5 and 1.6.



§4. PREPARATORY RESULTS

The mod-p homology of ka2n+l for k < 2n+l plays a cen-

tral role in computing the mod-p homology of the special
unitary groups and their related homogeneous spaces.

H*(Qk52n+l;Z/p) is computed in [6 ].

Definition 4.1. A sequence I==(ej,sj,...,sl,sl) for j=0 is

said to be k-admissible if:

(1) - O<Si£Si_l<k.

Il
o

(ii) 1If p=2, then €5

0or 1l and Si+l :si—ei mod 2.

(iii) If p>2, then e,

€ . €
i ] ceeg T

QI denotes the operation B Qsj(p—l) R Qsl(p—l) where

I= (E"Sj"°°’€l’sl)°

Definition 4.2. Let V be a graded set and let kzl. Then

(V,k) is the graded set

Loy
|

Definition 4.3. Given a graded set V, we denote the symme-

veV, I= (ej,sj,...,gl,sl) is k-admissible

and if p>2, then [v| =s; mod 2

tric algebra generated by the elements of (V,k) by S(V,k).

Theorem 4.4. Let k < 2n+l. There is a choice of primitive

k.2n+1
element Zn,ke H2n+l—k(Q S ;Z/p) such that as a Hopf

27
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ks2n+l

algebra H, (Q :Z/p) is isomorphic to S({z }.k) .

n,k

Furthermore, 2 can be chosen so that o(z ) =1z
n,k n,;k

where ¢ is the homology suspension.

n,k=1

Let o2s™ be the zero component of Qs™.  To compute

— o3

H*(QB(SU(n <3>);Z/p) we need to know the mod-p homology of

QSSBG H*(an+lszn+l;Z/p) is given in [6 ].
Theorem 4.5. H*(Q§n+lszn+l;%/p) cm, (2271520t g p) is

isomorphic to the symmetric algebra generated by the set

. |I=(e.,S.,...,85,5,) 1s 2n+l admissible,
Q 111 [-p7] 773 Lt
j>0, and if p>2, then Sy =0 mod 2

where [1] denotes the image of a generator of ﬁO(SO;Z/p)

0 Q2n+152n+l

under S~ - and [r] = [1]1F for re<Z. The Pontryagin

product is denoted by =*.

i p
Given a fibration F - X - B, we would like to express

H*(QkX;Z/p) in terms of H*(QkF;Z/p), H*(QkB;Z/p) and Qkf*

where f: OB+ F is a choice of map induced by the fibration
p. We consider this when B is an odd sphere and there are

. C o k
certain restrictions on & f,.

P

i
If F > X is a fibration and f: Q@ +~F is a

choice of map induced by p, then the map Qki* factors as
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H, (2°F;2/p) // Im Qkf*

where g is the quotient map and g is the unique map making
the diagram commute. In the following proposition, the

maps f and g are defined as above. If D is a subset of an
algebra C, then <D> denotes the subalgebra of C generated

by D.

L i P _2n+1 . .
Proposition 4.6. Let F > X > S be a fibration where F

is k-connected and 2 < k < 2n-1. Suppose that

(1) Im Qkf*E H*(QkF;Z/p) is a symmetric algebra.
(ii) If p>0 and xe Im Qkf* is a primitive exterior gener-
ator, then BQ(p_l)xz 0.

(iii) There is a set V¢ <o(ker Qkf*)> such that

<o (ker Qkf*)>==S(v,j) for some l<j<k.
Then the following properties hold.

(iv) g: H*(QkF;Z/p)#Inlﬁkf*->H*(Qkx;%/p) is a monomor-

phism.

(v) There are choices of elements x e H*(QkX;Z/p) for vev
k _ L _
such that Q p*(xv)——v and S({xv}vev,j) is a subalge

bra of H*(Qkx;%/p).
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(vi) Identify H*(QkF;%/p)AIn1QKf* with its image under g.

Then H*(Qkx;%/p) is isomorphic as an algebra to the

tensor product of subalgebras,

H, (20F;2/p) /In 05 E, @ 8 ({x ) 4/ 3)

Furthermore, 1if V<SS o(Im Qk+lp*), then the X can be chosen
to be primitive. Thus S({XV}VtV’j) is a sub-Hopf algebra
of H*(QkX;Z/p) and the isomorphism in (vi) is a Hopf alge-

bra isomorphism.

Proof: Consider the morphism of fibrations.

Qk+152n+l . 'ka2n+l
o e
K. v k
Qi Q
ok oFx P, gkg2ntl

Since k < 2n-1 and F is k-connected, all of the above spaces
are O-connected. We prove Proposition 4.6 by comparing the
Serre spectral sequence for the top fibration to that of

the bottom fibration.

The E2 term for the Serre spectral sequence of the

path space fibration of ka2n+l is

k+182n+l k52n+l

Q ;Z/p) @ Hy (O iZ/P)

*(
The differentials in this spectral sequence follow one of

two patterns [6 ].



+
H*(Qk+182n l;Z/p)

o
10
v
l_l

N
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The element x in H*(kazn+l

:Z/p) 1s primitive and y sus-
pends to x. Type (a) differentials occur if p=2 or if p>2
and x is odd dimensional. Type (b) differentials occur if
p>2 and X is even dimensional.

Conditions (i) and (ii) of Proposition 4.4 assure that

in the Serre spectral sequence for the fibration

k. of1 k. oFp
—F

ofF 21, 0%x kg2n+l

§

that the differentials behave as above if x ¢ o(ker Qkf*),

where v is replaced by Qkf*(y). If xe o(ker Qkf*), then x
is a permanent cycle. Thus the E~ term for this spectral
sequence 1is
k k k
H, (Q°F;Z/p) /ImQ £,8<o(ker Q7f,)>

The E~ term gives the following information:

. k k k . .
(1) g: H, (QF;%/p) /Im 0 f, > H (OX;2/p) 1s a monomorphism.

(ii1) We may choose elements X, € H*(Qkx;z/p) for veV such
k _ . - k+1

that Q p*(xv)——v. Furthermore, if VEo(Im Pi) s
then the X, can be chosen to be in the image of the
suspension, and hence are primitive. Since
H*(Qkx;%/p) is commutative and <o(ker Qkf*)> is the
symmetric algebra S(V,Jj), there are no algebra exten-
sion problems and S({XV}VfV'j) is a subalgebra or

sub-Hopf algebra of H*(Qkx;%/p).
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Thus H*(QkX;Z/p) is isomorphic as an algebra, or Hopf alge-
bra, to the tensor product

H, (0%F;2/p) / In¥E,®s({x ) _ov3) - C

Remark 4.7. <o(ker Qkf > is always a symmetric algebra.

%)

If V is assumed to be any set generating <o(ker Qkf*)> as
a symmetric algebra and j is 1, then <o(ker Qkf*)>==s(v,j).
Thus there is always a V and j as in Proposition 4.6(iii).
However, the larger we are able to choose j, the more in-
formation we obtain concerning the Dyer-Lashof operations

in H*(QkX;Z/P)c

Remark 4.8. We find it convenient to identify the element

ka2n+l

m

X, € H*(Qkx;%/p) with the element v < H :Z/p) . This

x

will simplify notation and make it easier to describe cer-

tain maps. It will be clear from the context whether we
are considering v an element of H*(QkX;Z/p) or an element
of H*(Qk52n+l;%/p). Tt should be noted that the diagonal

map and Steenrod operations on the element v in

H*(QkX;Z/p) are not in general the same as in

k82n+l

H, (D iZ/P) -

The following two corollaries follow directly from

Proposition 4.6. Corollary 4.9. describes the maps Qki*

g S2n+l S2n+l

i
and Qkp* where F - X and f£: Q -~ F are as in

Proposition 4.6.
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Corollary 4.9. The map Qki* is given by the composition
quotient
i, (25F;3/p) u, (°°F;2/p) / Im2®f,
k k

H, (VF;&/p) /ImQ £,8S(V,])

where the vertical map sends x to x®l. The map Qkp* is the
quotient map composed with inclusion:

k

B, (2XF;2/p) /I 08E, 8 (V, ) — s (V,§) =, (2% Liz/p).

In Corollary 4.10 we consider the morphism of

fibrations
1 P
0 0 .o2n+1
FO XO S
r S t
i p
1 1 2n+1
Fl .Xl S

where Fi is k-connected for some 2 <k < 2n-1 and

£ . QSZn+l_*

1 Fi denotes a choice of map induced by P - We

assume that (Qkfi)* satisfies conditions (i) and -(ii) of
Proposition 4.6, and that there exist sets

o Kk k _ .
V. € <o (ker (Q fi)*)> such that <o(ker(Q fi)*)>-—S(Vi,ji) for
some 1 Sjifsk, Thus H*(Qkxi;%/p) is isomorphic to the

tensor product

H, (2°F ;Z/p) / Im (2°€,) ,®S(V,,3,)
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To describe the map ka*, it suffices to give the action of
ka* on the elements in H*(QkFO;%/p)A/Im(Qka)* and on the

elements VeVO,

Corollary 4.10. The map ka* is given'by:

(1) Let [y]eH*(QkFi;%/p)A/Im(Qkfi)* denote the class of
k
y < #,(25F,;z/p) . Then 2%s,(Iy]) = (2, () 1.
(ii) Let veV Then Oks (v) = th (v) + z__ where
< Oo M P %* v
z, € H*(Qkxl;%/p) is in ker(Qkpl)*. Furthermore, if
th*(VO)SEVl, then we may assume that the element
z_=0.
\4

Remark 4.11. To interpret the equation ka*hﬂ =th*ﬁﬂ +t2z

note that th*(v)e S(Vy j)§ H,(Q

1~
r‘S2n+l;Z/p). Thus follow-

ing the conventions in Remark 4.8, we may consider th*(v)

as an element in H*(Qkxl;z/p).

The following corollary is stated in anticipation of
applying it along with the Bockstein Lemma in Section 10 to

compute the higher Bocksteins in H*(Qz(SU(n)/SU(m));%/p).

i
Corollary 4.12. Let F - X E S2n+l and f: Qszn+l-+F be as
in Proposition 4.6. If xc¢ H*(ka2n+l;z/p) transgresses to
Y € H*(Qk+lszn+l;%/p) in the Serre spectral sequence for the

ka2n+l, then in the Serre spectral

sequence for the fibration Qkp, X transgresses to Qkf*(y).

path space fibration of
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Proof: This follows from comparing the Serre spectral

sequences for the following morphism of fibrations.

Jk+lg2n+l I okg2n+l
Kp Ky , okg2n+l 0



§5. THE mod-p HOMOLOGY OF 93(SU(n)<3>) AND PROOFS

OF STATEMENTS 1.6 AND 2.5

To prove Theorem 1.6, which gives the algebra struc-

ture of H*(QB(SU(n)<3>);Z/p), we induct on n using Proposi-

tion 4.6 applied to the fibration

i : P
SU(n)<3>——£—9SU(n+l)<3>-———»Szn+l

Lemma 2.5 will follow general results obtained concerning
the maps Q3i* and Q3p*.

The following algebras are the building'blocks for

3

H, (R~ (SU(n)<3>);%/p). Because of their importance, we give

explicit descriptions of each.

S(U;,3): Let U, be the graded set {u;} where |ui|= 2i-2.

By Theorem 4.4, S(Ui’3) is isomorphic to H*(Q352l+l;%/p)
where ug is a generator of Hzi_2(93521+l;Z/p). When p=2,

2y — a.b
s(u,,3) = P[Qleui1 a,b>0]

When p>2,

3 u, | az0, b>0]

_ a
= PIQ, (p-1) %1

a
(p-1) U | 2201 BB (1) 50

a b
OP L8 (p1) 89 (p-1) s | 2rP70]

S(Vi,2): The algebra S(Vi,Z) is a subalgebra of S(Ui,3)°

. _ a+1l _ n — 1
Define vi,a__8Q2(p—l)ui' When p=2, B8=8Sg,. Thus
a+l.  _ a _ a+l. _
BQS Tu; =0Q;Q5u,. Note that |vi’at—-2p i-3.

37



Define Vi=={v } When p=2,

i,a a0’

s(v,,2) = PlQTv, , | a,b20]

_a
Vi,b' afb20]€>P[bQ(p_l)vi’b\ a>0, b=0]

S(Ui,3)/S(Vi,2): For all p,

_ a
S(Ui,3)/S(vi,2) = P[Q2(p-l)ui | az0]
S: For all p,
= a = -
S = P[Q2(p-l)u | az0] where |u| = 2p-2
S arises as a quotient of H*(QSSB;%/p). Recall that
H*(QSS3;Z/p) was given in Theorem 4.5. Define a subalgebra
T‘EH*(QSSS;%/p) as follows. When p=2,
T = P[Qng[l]*[—2a+b] | a>0, b20]
When p>2,
_ a ~~b _.atb ,

a+b

a b
®P 807 ,-1) BQ (p-1) [11%[-p” "1 | a,b20]

3

OS3;%/p)/T where u is the class of

Then S=H,(Q



39

The next proposition, which implies both Theorem 1.6
and Lemma 2.5, is proved by induction. Much of the work in
proving the inductive step is done in a series of technical
lemmas concerning the Dyer-Lashof operations in
H;(Q3(SU(n)<3>);Z/p); These lemmas are proved in Section 6.

Because the proposition is used in the proofs of these

lemmas, we index the proposition by n.

Proposition 5.1(n). Let p<msn. Then
(1) There are choices of elements u, us and Vi o4 in
H*(QB(SU(H)<3>);Z/p) where
_ P _ a+l, _
lu| =2p-2, ‘ui}—-Zl 2, 'Vi,al 2p° i -3,

and H (Q3(SU(n)<3>);%/p) is isomorphic to the follow-
*

ing algebra:

S @ S(Ui,3)/5(vi,2)

(1i) Let i: SU(m)<3> - SU(mtl) <3> and p: SU(m)<3> 8™ 1

be the inclusion map and guotient map, respectively.

Identify H, (2°(SU(m)<3>);%Z/p) with the isomorphism
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: : 3 .
given above. Then the maps Q31* and 07p, are given

as follows.

(a) Let mf 1l mod p. The map 931* is the obvious in-
clusion map. The map Q3p* is the quotient map

projecting onto the factor S(U,_;,3).

(b) Let m=1 mod p. The map Q3i* is given by the

quotient map H*(Q3(SU(m)<3>);Z/p) >

3

H, (Q (SU(m)<3>);Z/p)/S(Vm ,2) composed with the

/P

obvious inclusion map. The map QBp* is the quo-

tient map projecting onto the factor S(Vm_l,2).

Comparing the descriptions of H*(QB(SU(n)<3>);%/p)

given in Theorem 1.6 and Proposition 5.1, we see that in

Theorem 1.6 the generator in dimension 2pa+li— 3 is

a . L ,
Q3QrdJViAV whereas in Proposition 5.1 the generator 1in
dimension 2pa+li- 3 is 2

Lemma 5.2. Let p<n. Then in H*(Q3(SU(n)<3>);%/p),

a - -

Q3@-lfﬁq0 = ivi’a-+(decomposables) for some ¢ £ 0 mod p.

Theorem 1.6 follows from Proposition 5.1 and
Lemma 5.2. The proof of Lemma 5.2 is given in Section 6.
Lemma 2.5 follows directly from the second part of

Proposition 5.1.



41

Proof of Proposition 5.1 (p+l): Localized at the prime p,

SU(p) is homotopy equivalent to 53« vee x g?Pl

[11,15]. Thus

H*(QB(SU(p)<3>);%/p) is isomorphic to

H, (035%:2/p) © 1, (275°:2/p) @ oo H, (2°5%P Lz p) .

By Lemma 3.1, (Q ap)* 1S non-zero on Hzp_3(-;%/p)

where ap: 52p+l%-(BSU(p))<4> is defined as in Section 2.
4_2p+1 .
Let zp,4 be a generator of H2P_3(Q S ;Z/p) . Because
Hzp_3(Q3(SU(p)<3>);X/p) is generated by one element,
4 _ . _ 4 _
(2 Jp)*(zp,4)-Ql[l]*[ 2] if p=2, and (0 ap)*(zp’4) =
S(SQZ(p_l)[l]*[-p]) for some € £0modp if p>2. By the
Cartan formula and the Adem relations,
(Qi+l[l]*[-2a+l] for b,c=0
+ +c+
03 1oS 111w (-237S T
+c+ +c+
s (@3FCHL 1. (23
a,b.c _ _ a+l
QleQB(Ql[l]*[ 2]) = W . (Qi[l]*[_2c]2 for b=0, c>0
(Qi+l[l]*[—2c+l])4 for b=l, a=0
0 otherwise
and R . :
1l a 2 b 3.c . _

0 otherwise
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where A £0 mod p. This determines the map (Q4u ) - Thus
the image of (Q4ap)* is T and <O(ker(§24ctp)*)> is S(V,,2).
Proposition 5.1 (p+l) follows by applying Proposition 4.6

and Corollary 4.9 to the fibration

: p
SU(p) <3> —=>8U (p+1) <3> —>g?P*L | g

The results obtained above concerning the image and

kernel of (Q4ap)* will be of use in Section 7. We record

this in the following lemma.

Lemma 5.3. The image of (Q4ocp)* is T and <0(ker(Q4oap)*)> is S(V_,2).

Proof That Proposition 5.1(n) Implies Proposition 5.1 (n+1):

Let n>p. Assume Proposition 5.1(n). Proposition 5.1(n+1l)
follows by applying Proposition 4.6 and Corollary 4.9 along
with the following lemma to the fibration

SU(n)<3>——£—*SU(n+l)<3>——8—952n+l

d
Lemma 5.4. Let n>p.
(1) If n0 mod p, then Im(Q4an)*= 0 and

<o(ker (2% ) ) > = S(U_,3)

(ii) If n=0 mod p, then the ideal generated by Im(Q4un)*

is equal to the ideal generated by S(Vn/p,Z) and

4
<g(ker(Q un)*)>==S(Vn,2).

Lemma 5.4 is proved in Section 6. Thus assuming

Lemma 5.4, we have shown Proposition 5.1(n) for all n>p.



§6. PROOFS OF LEMMAS 5.2 AND 5.4

Lemma 5.4, which describes the image and kernel of

(Q an)*, was used 1in Section 5 to prove that Proposition

5.1(n) implies Proposition 5.1(n+l). Thus to prove

Lemma 5.4, we assume Proposition 5.1(n).

4.2n+1

Let z be the generator of H (Q°S Z/p). To

n,4 2n=3

compute (£4un)*, it suffices to compute (Q4u to-

nu Zn,4
gether with operations on this element.

To compute operations in H*(Q3(SU(n)<3>;Z/p), we need

to have some hold on the module of primitives in

p3

H, (R~ (SU(n) <3>);Z/p) .

Lemma 6.1. Let A be a connected Hopf algebra with both

commutative multiplication and comultiplication over the

r

p

field Z/p. If xe¢A is primitive, then x=y for some rz0

where vy projects to a non-zero element in the module of in-
decomposables.

Proof: Consider the exact sequence of Milnor-Moore [ 9],

0 > P(E(A)) - P(A) = Q(A) - Q((5(A%))*) -~ 0

where & is the pth-power map. If x is primitive and pro-
jects to zero in Q(A), then xef(A). Now apply the exact
sequence of Milnor-Moore to the Hopf algebra £(A). Since

x 1s not in gr(A) for all r, x must project to a non-zero

43
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r

element in Q(gr(A)) for some rz=0. Thus x==yp and y pro-

jects to a non-zero element in Q(A). [J

We list the generators of H*(Q3(SU(n)<3>);%/p) given
by Proposition 5.1(n) and give dimensions in which these
elements lie. The cases p=2 and p 2 are considered separ-

ately.

(1) Let p=2.

\qu\ = 2a+2_2 for az=0

Q3u, | = 23*1i 5 for a0, 2<1i<n-1, i £0 mod 2
‘Qi+lQ§“i1

= 23(2P*2i-2)-1 for a,b=0, {EEIW <i<n-1, i 0 mod 2
077, |

= 23(2PT25_2)-1 for a,b20, (ééi- <i<n-1, i=20 mod 2

(ii) Let p>2.

a+1l

)11|=2p -2 for a=0

a

195 (p-1
[ AS _ a. _ . _ .
EQZ(p—l)ui‘ 2p®i-2 for a=0, 2<i<n-1, i 0 mod p

a b+1
\Q(p_l)sgz(p_l)ui|

a+l b+l _

for a,b=0, (h—fl<i5n—l, i£0 mod p



a b+1
tQ(p—l)vi,b1 = p¥(2p i-2)-1 and
+1 + +1.
803l vy ol = P2 i) -2
14

for a,b=0, [h;f}< i<n-1, 120 mod p.

By Lemma 6.1 and inspection of the dimensions in which
~3

the generators of H, (027 (SU(n)<3>);%Z/p) lie, we obtain the
following lemma.
Lemma 6.2. (i) The module of indecomposables of
H*(Q3(SU(n)<3>);%/p) has at most one generator in any
dimension.

(ii) Let n=pk where k>1. Then any primitive in
H2Pa+lk_3(Q3(SU(n)<3>);Z/p) is of the form X(vi’a+t) where

3(sU(n)<3>);%/p) is zero.

the image of t in QH, (O
(iii) Let n=pk where k>1 and p>2. Then

PH (03 (SU(n) <3>) :%/p) = 0.

2pa+2k—4
(iv) Let n=2k where k>1. Then any element in
PH (23 (su(n) <3>);&/2) is of the form:
a+3
2 k-4
V(05 0)? if k=2, 1
c+a+l 2 . _ AC. —
>\(Q2 ui4-t) if k=271, 10 mod 2, i>1

where t projects to zero in QH*(QB(SU(n)<3>);Z/2),

Lemma 6.3. Let n=2k where k>1. Consider the elements in

H*(Q3(SU(n)<3>);Z/2) of the form
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V(05 urb) 2 for k=25, c>1
c+a+l 2 C. . .
A Q7 u, +t) for k=271, i¥0 mod 2, i>1
where t projects to zero in QH*(Q3(SU(n)<3>);%/2), Then

4 . . . .
Sq, applied to either of the above elements is zero if

and only if X =0 mod 2.

Proof: Apply Sqf to the above elements to obtain the

following:
- +
@St P e sqln) ? = sqt(n(@tqu+ 1) ?)
W05 2452t ? = sap 0N e ) %)

Since t projects to zero in the module of indecomposables,

2
£t = Y., r.s. where |r.|,|s.| >0. Thus Sg,t =
2 .
. Sgr.s% + Sg,r. Sa,s. + r- Sqg,s.. Hence if Sqg,t
Ly SUurysy + SATy SISy j 29x55 t 29k
is a square, then for some j, rj = Sj and rj projects

non-trivially in the module of indecomposables. Thus

|=2a+l

lrj! k-1. By inspection of the dimensions in which

the generators of H (93(SU(n)<3>);Z/2) lie, there can be no
*

such r.. Thus the above elements are zero if and only if

A=0 mod 2. [

4 -
Lemma 6.4. Let n=pk where k>1. Then (& an@ Z0. 4= Vg0

7

for some ¢ £0 mod p.

4 .
Proof: By Lemma 3.1, (Q unh zn,4z 0. Since Vk,O generates

3

H (Q°(sU(n) <3>) ;Z/p), Lemma 6.4 follows. [

2n=3
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Lemma 6.5. Let n=pk where k>1. Then in

H, (07(5U(n) <3>)52/p), Q5 1,Vy o =

€, £0 mod p and t, projects to zero in

0H, (23 (su(n) <3>) ;Z/p) .

e VvV + t_  where
a k,a a

Proof: Proceed by induction on a. If a=0, then Lemma 6.4

a-1 v _
3(p=-1) k,0

where e__; £0 mod p and t,_j Projects to

is clearly true. Let a>0. Assume Q

®a-1k,a-1 " Fa-1
zero in the module of indecomposables. By the Nishida rela-

Q4szn+l;Z/p), the following formulas

_ a-1
4= 993 2y

for some A £0 mod p.

tions applied in H,(

hold: If p=2, then Squ?zn and if p>2, then

l.a _ a-1
Px03(p-1)%n,4 = "2 (p-1)9(p-1) %n, 4

By applying (Q4an)* to the above equations together with
the induction hypothesis and Lemma 6.4, the following for-

mulas hold: If p=2, then Squ?Vk 0= lek a—l+'Qlta-l and
14 14

. 1l.a _
if p>»2, then P QB(p—l)vk,O = Aga—llek,a—l-+Qlta—l' Thus
is primitive

for all p, Q§( 20. Also Q§

p-1) 'k, 0 (p-1) 'k, 0

because it is the image of a primitive. Thus by

Lemma 6.2(ii), Q?(p—l)vk 0= +—ta for some € $Ormxip

eE_V
a k,a

and where the image of ta in QH*(Q3(SU(n)<3>);Z/p) is

zero. [

Lemma 6.6. Let n=pk where k>1. Then in

H*(Q3(SU(n)<3>);%/p), the following formulas hold:

. _ a _

(i) Let p=2. Then Q2Q3vk,0 0.

.. a+1l _
(i1) Let p>2. Then BQ3(p—l)vk,O = 0.
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- 4, a -
Proof: Let p=2. By Lemma 6.4, (Q un)*(Q2Q3zn,4) =

a a . C .
Q2Q3vk’0. Thus QZQBVK,O is primitive. By Lemma 6.2(iv),

(
’A(Q§+au~+t)2 if k=25, c>1
a
0,05V =
293V% 0
{R(Q;+a+luj+-t)2 if k=253, 5 :0mod2, j>1

where t projects to zero in QH*(QJ(SU(n)<3>);Z/2). By
Lemma 6.3, SQf applied to the right-hand side of the

above equation is zero if and only if X =0 mod 2.

By the Nishida relations, in H*(Q452n+l;%/2)
4 A 0 if a=0
Sq, (Q,052z ) =
2%3°n,4 a-1 .
Q2Q3 zn,4 if a>0

By applying (Q4un)*, we see that Sqi(szk 0)= 0 and if
7

4 +
Sqs 2,05V, o) =0, then Sa;(0,03 v, ) =0. Thus

Q2Q§vk 0= 0 for all a>0. This proves Lemma 6.6(1).

. a+1l . C . . .
Since BQB(p—l)Vk,O is primitive and in dimension

202%2K_4, Lemma 6.6(ii) follows from Lemma 6.2(iii). O

Proof of Lemma 5.4: Let n£0 mod p. By Proposition 5.1 (n),
3

(SU(n) <3>):;%Z/p) = 0. Thus (Q4a L_zn 4= 0, which

(0 s

Hon-3
implies (Q4an)*= 0. Lemma 5.4(i) follows from this state-

ment.

4 = c
Let n=kp for k>1. By Lemma 6.4, (& un)*zn,4'_”vk,0'

Thus by Lemmas 6.5 and 6.6, the image of (Q4an)* is gener-
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a
ated by elements of the form Q(p-l)(vk,b-+tb) and

a+1l
SQ(p—l) (Vk,b +ty

of indecomposables. By Proposition 5.1(n), the image of
3 3

) where tb projects to zero in the module

H, (27 (SU(k+1)<3>;Z/p) in H, (27 (SU(n)<3>);Z/p) is

(
is(uk,3) if k£0 mod p

se S(U,,3)/5(V;,2) | ®

| S ——

l1<ic<k-1 S(Vk,2) if k=0 mod p

i £0modp |
¢, is in the image of H, (22 (SU(k+1) <3>) ;&/p) and is odd
dimensional. Thus it is in the ideal generated by S(Vk,Z).

This implies that the ideél generated by Im(ﬂ4ap)* is equal
to the ideal generated by S(Vk’2)' That <0(ker(Q4an)*)> =
S(Vn,2) follows directly from Lemmas 6.4, 6.5 and 6.6. [

Proof of Lemma 5.2: We show that in H*(Q3(SU(n)<3>);Z/p),

a

Q3 =ev + (decomposables) where ¢ £ 0modp. Con-

(p-1) 1,0
sider the image of Vi in H*(Q3(SU(pi));%/p). By Lemma 6.5,
14

i,a
=evV, + (decomposables) where e £0modp. Thus

0% v
3(p-1) 1,0 i,a
. a —
by Lemma 6.2(i) and the above, QB(p—l)vi,O

eV a+—(decomposables) in H*(Q3(SU(n)<3>);Z/p).

’



57. THE mod-p HOMOLOGY OF Q°(SU(n)/SU(m)) AND
THE PROOF OF THEOREM 1.11

The technigque used to prove Theorem 1.11, which gives

3 (sU(n)/SU(m)) i%Z/p), is simi-

the algebra structure of H,(Q
lar to that used in Section 5. The following proposition

implies Theorem 1l.1l.

Proposition 7.1. Let 2<m<n. Then

(1) There are choices of elements uy and v in
2
H, (Q7(SU(n)/SU(m)) ;Z/p) where

lu, | = 2i-2 v, | a+tly
i i,a
3

and H, (Q~(SU(n)/SU(m));Z/p) is isomorphic to the

following algebra:

ieA (n,m)
““p

® {' Q%§ s(vi,zJ
le

Cp(n,m)

J
where the indexing sets Ap(n,m), Bp(n,m) and

Cp(n,m) are as defined in Section 1.

(ii) Let jn . SU(n)<3> - 8U(n)/SU(m) be the natural guo-

tient map. If n>p, then (Q3jn m)* is given by:

50



( Vi,a 1>p(m=1)
= V. a+(decomposables) m<i<p(m=1)

i<m

(iii) Let i: SU(n-1l)/SU(m) ~SU(n)/SU(m) be the natural in-
clusion. Identify H*(QB(SU(n)/SU(m));%/p) with the
isomorphism given above. Then the map ©7i, is given
by the composition of the natural quotient and

inclusion maps.

Proposition 7.1 is proved by induction. The following
lemma provides most of the information needed to carry

through the induction step. We assume Proposition 7.1 for

QSZ:(1+1_>

2<m<n, where nzp. Let Yo m SU(n)/SU(m) be a

choice of map induced by the fibration

p: SU(n+l)/SU(m) - s2PHL,

Lemma 7.2. Let 2<m<n where n2p.
(i) If n¥0 mod p or m> [n/pl, then Im(QBYrl H9*= 0 and
3 -
<g(ker (Q yn,m)*)>——S(Un,3).

(ii) If nzZ0 mod p and m < [n/p], then the ideal generated

by Im(Q3yn is equal to the ideal generated by

)
,m°*

and <0(ker(Q3Y ), )>=8(V_,2).

S(Vn/p,Z) n,m

Proof: The map Y factors as:
=== n,m
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>SU(n) /SU(m)

SU(n) <3>

Proposition 7.1(ii) gives (Q3jn m)* except when n=p.

Localized at the prime p, QB(SU(p)<3>) is homotopy equiva-

lent to 0383 x 352 « «ee x 2382P7L ang 23 (su(p) /sUm)) is

0
302m+1 3.2p-1

homotopy equivalent to Q7S x Q78 and QBjn . is
14

projection [11,15]. Thus (Q3j is the obvicus gquotient

n,m)*
map,

3
0

3

i, (03s3:2/p) 98, (2%;2/p) © - -+ @ H, (275°P7;2/p)

Q3SZm+l; 2p-1

. H Z/p) ® + -+ QH, (08 J%/P)

 (

Information concerning (Q4un)* is given by Lemma 5.3 when

n=p, and by Lemma 5.4 when n>p.

Let n=p. Then m > [n/p]. By Lemma 5.3, Im(Q4un)* =
T EH*(QSSB);%/p). By the above remarks, (Q3jp m)* is zero

on this factor. Thus (QBYP nﬂ* =

Let n>p. If nf0 mod p, then by Lemma 5.4, (Q4unh:=0'
Thus (Q3yn mu =0. Ifn=0 mod p and m > [n/p], then by
Proposition 7.1, (Q3j ), (S(V ,2)) =0. By Lemma 5.4,

n/p
the ideal generated by Im(Q4unu is equal to the ideal gen-

n,m

3. _
erated by S(Vn/p,2). Thus (Q jn,ng* =0.
Hence we have shown if n=0 mod p or m > [n/p], then
(Q3jn nﬂ* =0. Lemma 7.2(i) follows from this statement.
14
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Let n>p where n=kp and msk. By Proposition 7.1(iii),

v
n,nﬂ* k,a

H, (0° (SU(k+1) /SU(m)) ;&/p) in H, (Q

(Q73 is contained in the image of

3(SU(n)/SU(m));Z/p), which

is
S (U, /,3) k£0 mod p

é%b S(U.,3)/S(V.,2) |
ieA_(n,m) + + _
p S(Vk,3) k=0 mod p

Since (QBj )&V is odd dimensional, it must be in the
n,m k,a

ideal generated by S(V

3.
(2 jn,m)(vk,a

k,2). By Proposition 7.1(ii),
) = Vi a-F(decomposables). Thus the ideal

generated by (Q3jn IT1)*(8( )) is equal to the ideal gen-

Vi, 2
erated by S(Vk,Z). By Lemma 5.4, the ideal generated by

Im(94@nh is equal to the ideal generated by S(Vk,2). Thus
the ideal generated by Im(Q3yn,mu is equal to the ideal
generated by S(Vk,Z). Also, by Proposition 7.1(ii), we see
that (QBjn,m)* is a monomorphism on Im(Q4un)*, Thus
<olker(ay, ,)> = <oker(2¥o),)> = S(V_,2). O

Proof of Proposition 7.l: Proceed by induction on n. If
2<m<n<p, then localized at p, Q3(SU(n)/SU(m)) is homotopy
equivalent to 9352m+l><--- XQ382n_l and

Q3i: 93(SU(n-l)/SU(m))-+Q3(SU(n)/SU(m)) is homotopy equiva-
lent to the inclusion of 9352m+l><.._ XQ382n_3 into
R3s2mtl L« g3g?L, Proposition 7.1 for ns<p now follows

by applying H, (-;Z/p) .
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Let nzp. Assume Proposition 7.1 for n.
Proposition 7.1(i) and (iii) for n+l follow by applying
Proposition 4.6 and Corollary 4.9 along with Lemma 7.2 to
the fibration

SU(n) /SU(m) - SU(n+l1)/SU(m) ~ s2P*t

To determine the map (Q3j apply Corollary 4.10 to

n+l,m)*

the morphism of fibrations

SU(n)<3>———————>SU(n+l)<3>-—————-éS2n+l
jn,m jn+l,m id
1% 2n+1

SU(n) /SU(m)—>SU(n+1) /SU(m)—>S

as in Proposition 7.1(iii) on the
3

. . 3.
This gives (Q jn+l,m)*

image of H*(Q3(SU(n)<3>);%/p) in H, (Q (SU(n+1)<3>);Z/p) .

However, on the factor <0(ker(Q4un)*)> of H*GP(SUQH1)<32%/pL
there is indeterminancy. If m< [n/p] or n £ 0mod p, then
this indeterminancy is zero by Corollary 4.10(ii) and the

fact that <o(ker(2to ), )>=<o(ker(2’y ), >. If m> [n/p]

n,m

and n = 0mod p, the indeterminancy is present and is given

by ker Q3p*. Since QH2 a+l (93(SU(n+l)/SU(m));%/p) is gen-
P n-3

erated by the image of Vi oa and Q3p*vn 57 0, the indeter-
4 14

minancy consists of decomposable elements. Thus Proposi-

tion 7.1(iii) follows. [



§8. THE mod-p HOMOLOGY OF QZ(SU(n)/SU(m)) AND PROOFS

OF STATEMENTS 1.5, 1.10, 1.12, 1.13 AND 1.15

In this section we prove Theorem 1.4 and Theorem 1.10
which give H*(QZ(SU(n)/SU(m));Z/p) as a Hopf algebra, Pro-
position 1.14 and 1.15 concerning the Dyer-Lashof and
Browder operations in H*(Qz(SU(n)/SU(m));Z/p) and Proposi-
tion 1.12 which describes the map sz* where
j: SU(n) -~ SU(n)/SU(m) is the natural quotient map.

The following Hopf algebras are the building blocks

for H*(Q2(SU(n)/SU(m));%/p). Because of their importance,

we give explicit descriptions of each.

S(X;,2): Let X, be the graded set {x;} where | x| =21i-1.
By Theorem 4.4, S(Xi,Z) is isomorphic to H*(QZSZl+l

where X is the generator of Hzi_l(92521+l;

iZ/P)

Z/p). When p=2,

_ a
8(X;,2) = PlOyx; | az0]
When p>2,
s(x,,2) = E[Q x, | az01 ® P80 x. | a>0]
i’ “(p-1)"1 - “(p-1) 71
S(Yi,l): The Hopf-algebra S(Yi,l) is a sub-Hopf algebra
— . _,.a+tl . o —qgt
of S(Xi,Z). Define yi,a_BQ(p—l)Xi' 7hen p=2, B=Sg,. Thus
a+l _ a 2 | a+l, .
BO7 "x; = (Q7x,)7. Note that lyi,a‘__ZP i-2. Define
= 1
Yi {yi,aJazo. For all p,
S(v;,1) = Ply; _|az0]

55
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S(Xi,2)/S(Yi,l): For all p,

The following proposition directly implies

Theorem 1.10.

Proposition 8.1. Let l<m<n. Then

(i) There are choices of elements X and yi,a in
H*(QZ(SU(n)/SU(m));%/p) where
%y | = 2i-1, Lyi’a[ = 2pa+ll—2
2

and H, (Q (SU(n) /SU(m)) ;Z/p) 1is isomorphic to the

following Hopf algebra:

) S(%;,2)/8(¥;,1) | B X s

ieAp(n,m) ieBp(n,m) +
ieCp(n,m)

where the indexing sets Ap(n,m), Bp(n,m) and C_(n,m)

are as defined in Section 1.
(ii) If m>1, then x., =ocu. and y. =gV, where
i i i,a i,a
3

u., ¢ H, (27 (SU(n)/SU(m));%Z/p). If m=1, then x.

v,

i""i,a

and y. are the image of ocu, and oV, under the
i,a i i,a

natural inclusion Qz(SU(n)<3>)-+stU(n) where

(8U(n)<3>) ;%Z/p) .
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The module of primitives 1in H*(QZ(SU(n)/SU(m));Z/p) is
generated by the following elements. We consider the cases
p=2 and p>2 separately. The dimensions of the generators

are given for the convenience of the reader.

Let p=2.
|Qixi\ = 2a+li—l az0 , ieAz(n,m)uBz(n,m)
b+1
0%x) 2 | = 2P 2®*ticl) a,p20,  ieB,(n,m)
171 2
b
Ly, 07| = 2222 a,b20 , ieC,(n,m)
Let p>2.
1Q?p—l)xi1 2pai—l az0 , ieAp(n,m)qu(n,m)
b
1(6@?’1’ )P = pP(2p®™ti-2)  a,b20 , icB_(n,m)
1 p
b
\(yi a)p | = pb(2pa+li—2) a,b=0 , ieCp(n,m)

By inspection of the dimensions in which these gen-
erators lie, we obtain the following corollary.

Corollary 8.2. The module of primitives in

H*(Qz(SU(n)/SU(m));%/p) has at most one generator in any

given dimension.

Corollary 8.3. Let n>1. Then in H*(stU(n);Z/p)

a —
QZ(p-l)yi,O = Eyi,a for some ¢ £0 mod p

a _ . _
QlQZyi,O =0 if p=2
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a+1l

BQy Yy 0 = 0 if p>2
Proof: By Lemma 5.2, in H*(Q3(SU(n)<3>);Z/p),
a = o~
Q3(p_l)Vi’O-€Vi,a+°(decomposables) where ¢ $O mod p. Thus

by Proposition 8.1(ii) the formula Qg(p—l)yi 0= EY; 4

holds. The other formulas hold because the module of

primitives in the appropriate dimension is zero. [

Corollary 8.4. Let jn,m: SU(n) - SU(n) /SU(m) be the natural
quotient map. Then (szn,ng* is given by the following
formulas.
5 ( x; i=m
(1) (%9, hexy = i .
. 2. ( Yi,a izm
SV LE TR B

Proof: For n>p, Corollary 8.4 follows from Proposition

7.1(ii) and Proposition 8.1(ii). TIf n<p, then localized

3 XS2n---l

at p, SU(n) is homotopy equivalent to S~ x e-- and

2n+l ., g2n-1

SU(n) /SU(m) is homotopy equivalent to S and

jn o is the obvious projection map. This implies Corollary
1

8.4 for n<p. O

Theorem 1.5 follows from Proposition 8.1(i) and
Corollary 8.3. Proposition 1.15 follows from Corol-

lary 8.4.
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Proposition 8.1 is proved by induction. The following
lemma provides most of the information needed in the induc-
tion step. We assume Proposition 8.1 for lsm<n. Let

Y Qszn+l-+SU(n)/SU(m) be a choice of map induced by the

n,m’

fibration p: SU(n+l)/SU(m)—+Szn+l.

Lemma 8.5. Let 2<m<n.

(1) If n¥0 mod p or m> [n/pl, then Im(szn o« =0 and

<0(ker(92y e ) = S(Xn,Z).

n,m

(ii) If n=0 mod p and m< [n/p], then Im(szn wx =

2 =
S(Yn/p,l) and <o(ker(Q Yn,mh )>—-S(Yn,l).

Proof: The map Y factors as:
—_— n,m

y
Qszn+l————ELm—9SU(n)/SU(m)
o In,m
SU(n)
Corollary 8.4 gives (sz ) We compute (Q3a )
© n,m*" n*’

Let n£¥0 mod p. By Proposition 8.1(i),

2 . _ 3 = i
2n—2(Q SU(n);Z/p) =0. Thus (Q anu zn’3-0 where 21,3 is
3.2n+1

3 -
a generator of HZn—Z(Q S ;Z/p) . Hence (Q un)*-—O.

PH

Let n=Z0 mod p. By Proposition 8.1(1),

PH (QZSU(n);Z/p) is generated by yn/p 0" By Lemma 3.1,

2n=2

3 3 _
(27 )y Zn,3 % 0. Thus (Q7a ) Zn,3_'kyn/p,0 for some

A£0 mod p. Using Corollary 8.3, this completely deter-

)

mines the map (Q3an* .



60

Lemma 8.5 follows directly from the above remarks. [

Proof of Proposition 8.1: Proceed by induction on n. If

n=2, then m=1 and SU(n)/SU(m)==S3. Proposition 8.1 follows
from Theorem 4.4.

Assume Proposition 8.1 for n. Proposition 8.1 for n+l
follows by applying Proposition 4.6, along with Lemma 8.5,
to the fibration

SU(n) /SU (M) ——SU (n+1) /SU (m) — 52071

Note when n$¥0 mod p or m> [n/pl, <O(ker(QzY )o ) > =

n,m

S(Xn,2) and when n=0 mod p and m< [n/pl,

<0(ker(92yn ), )>=8(Y_,1). Both Xn and Yn are in the

image of the suspension of Q3p*(H*(Q3(SU(n)/SU(m));%/p).

3

Thus Proposition 4.6 gives H*(QZ(SU(n)/SU(m));%/p) as a
Hopf-algebra, and that X and Y, 5 may be chosen as in

Proposition 8.1(ii). [

Proof of Proposition 1.13. The method used to prove that
2

A, is trivial in H,(Q°(SU(n)/SU(m));%/2) and that A, is

1
trivial in H*(QZSU(n);%/Z) is as follows.

Suppose that kn(a,b)z 0 for some a,be:H*(Qn+lX;%/2).

n+1

Thus there exist a and b in H_(Q X:%Z/2) such that

An(a,b)i 0 and if An(a',b‘)¢ 0 for some

1

at,b'eH, (2% 1x;2/2), then |al=]a'|,|b'| and

b| <max{|a'|,|b'|}. We say that the pair a,b is minimal.
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Note that quk E Sq*a Sq* “1p) which is zero
if a,b is minimal and j>0.

First we prove that A, is trivial in H*(QZSU(n);%/p)
Proceed by contradiction. Assume AzzOu By our comments

above on minimal pairs, one of the following cases must

occur:
(1) Any(x.,x.) 2 0 qu(k (x.,x.)) =0 for k>0
2 ‘il j 14 * 2 l, ]
iy K, _
(i1) kz(xi,yjlo) 2 0, S, (x Y4 0 )) =0 for k>0
N k -
(1ii1) Az(yi,o,yj,0)¢ 0, Sq*(Az(yi,O,yj,o)) 0 for k>0

The first two cases are impossible because the module of

primitives in H*(stU :%Z/2) in the appropriate dimensions

is zero. In the third case we must have that Az(yi O’yj O)
I 7

is either (Q% )2 or 0 for some k. But Sqi on these

p-1) %k 2Yk

elements is non-zero. Thus none of the cases may occur.

Hence AZ is trivial.

Since Ay is trivial on the image of H*(Q SU(n);Z/2) in
*(QZ(SU(H)/SU(m));%/Z), if Ay in H*(Q2(SU(n)/SU(m));Z/2)

were non-trivial, then kl(xi,xj)z 0 for some i,j where both

i and j are even. But the module of primitives in this

H

dimension 1is zero. Thus Al= 0. O

Proof of Proposition 1.12. By Corollary 8.3, to prove the

formulas given in Proposition 1.12, it suffices to prove
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that Q,x, = 0 in H*(QZSU(n);%/Z), By considering the dimen-

sions in which the primitives in H*(stU(n) iZ/2) lie,

Q2X1= 0 in all cases except when i=n-=1. Then
4
e (%)) n=2k, k0 mod 2
Q,x =
2"n-1 2 _ -
a(yklo) n=2k, k=0 mod 2
. 3 1.2 2
But in H, (27 (SU(n)<3>);&/2), Sq,Qu, = (Qu, )" and

1 2 1 1
Sq*(lek,O)z:vk,O’ whereas Sq,Q,u,_; = K3(un_l,Sq*un_l)=(J

: 1 _ . . .
since Sq*un_l—-O for dimension reasons. Thus Q3un-l is
not equal to either Qiuk or lek 0" By Proposition 8.1(ii),

|
u

. . 4 2
QZXn-l is not equal to either X, Or yk,O'



§9. STEENROD OPERATIONS IN H*(QZ(SU(n)/SU(m));Z/Z)
AND PROOFS OF PROPOSITIONS 1.14 AND 1.16
To compute the Steenrod operations on the elements X4
in H*(QZ(SU(n)/SU(m));%/Z), we suspend to
H, (Q(SU(n)/SU(m)) ;&/2) where the Steenrod operations are
known. The structure of H,(Q(SU(n)/SU(m));%Z/2) as a Hopf
algebra over the Steenrod algebra is given in the following

results [8].

Theorem 9.1. H,_(QSU(n);Z/2) is isomorphic to

P[wl,wz,.,.,wn_l] where Iwi\= 21. The coproduct structure

is given by

i
A, = z Wj®wi—=j where wo=l

The action of the Steenrod algebra is given by

27 . .
Sq*JWi = (1‘2]r])Wi_j
It is also shown in [8] that a basis for the module of primitives
in dimension < 2n-2 of H,(QSU(n);%Z/2) is given by the Newton

polynomials, which we denote by @i, for l<is<n-1. @i is de-

fined inductively by

Wy =W and w, = iw, - E W.W.
Also

sq2lv. = (i-23-1,9)w. .

* U1 ! i-j

Notice that the next two propositions follow imme-

diately from Theorem 9.1.

63
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Proposition 9.2. H,_(Q(SU(n)/SU(m));%Z/2) 1is isomorphic to

Plw _,...,w, _q] where \wil= 2i. Furthermore,

1] >Plw_, ;W is the obvious guotient

n=-1 m'"° n—l]
map, where i: SU(n) - SU(n)/SU(m).

Qi,: P[wl,...,w

Proposition 9.3. The image of wn_leH*(Q(SU(n)/SU(m));%/2)

+52n—l

under the map Qp,, where p: SU(n)/SU(m) ;, is the gen-

2n
erator Hzn_Z(QS

Theorem 4.4.

-1 . .
:Z/2), which we denote by zn—l,l as in

Lemma 9.4. (i) Consider xieH*(stU(n);%/Z) for i £0 mod 2.

Then ox. = W. .
i i

(ii) Consider xcH, (2%(SU(n)/SU(m));Z/2) for
1i=z0 mod 2. Then ox. =Ww..
1 1
Proof: To show either (i) or (ii), it suffices to consider

the case i=n-1. The element xisH*(Q2(SU(n)/SU(m));Z/Z)

was chosen so that its image under sz* is the generator of

HZn_3(9252n_l;%/2). Thus ox. is a primitive whose image in
I = -
(st l;Z/2) is z _, ;- Both cases of Lemma 9.4 now

Hon-2

follow by inspection of the module of primitives in

Hy _o(2(8U(n)/8U(m));:Z/2) . [

Proof of Proposition 1.16. Let i =0 mod 2. Note that the

module of primitives sz(Qz(SU(n)/SU(m));%/2) is zero
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if k<n-1. Thus Sq§j+lxi= 0. The module of primitives in
HZk_l(Qz(SU(n)/SU(m));%/2) is generated by Xy if msk<i.
Thus
Sqink _ J exi_j %f %-?EIH
0 if 1= <m

To determine e, suspend to H, (Q(SU(n)/SU(m));%/2) and use
the formula giving the action of the Steenrod algebra found

in Theorem 9.1. [J

Proof of Proposition 1.14. To prove Proposition 1.14(1i),
we proceed as in the proof of Proposition 1.16. Since
H,, (2%SU(n);2/2) is zero if Lsn-1, Sqy? 'x;=0. The

module of primitives in Hzg_l(QZSU(n);%/Z) is generated by

Qixk where 2= 2ak, k £0 mod 2, for l<is<n-1l. Thus

Sq%jxi = egixk where 1i-3j=2%%, k £0 mod 2

To determine ¢, suspend to H,(QSU(n);Z/p) and use the for-

mula giving the Steenrod operations found in the remarks

a
. a _a= _ = 2 _=

following Theorem 9.1. Note that o(lek)—QO k—(wk) =w,ay -
To prove Proposition 1.14(ii), it suffices to show

that in H*(stU(n);Z/2) for n=1 mod 2, that

W

Sqiyn_l’0= 0 for J£0 mod 4

(i-2j,j)yp_l__j 0 n-1-j =0 mod 2, n-1-j >
B 7

3
[NSI ]
=

I

)2 n-1-3 =0 mod 2, n-1-3 >

45 . .
Sq*jyn—lﬂ)z (1-2]’3)(Xn—l—j

s
[\
H

0 otherwise
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Let i: SU(n) ~ SU(2n-2) be the natural inclusion map.

By Lemma 8.5, in*(y ) 1is the image of the generator

n-1,0
of H4n_6(Q3S4n_3;%/2). Thus all Steenrod operations on
in*(yn_l O) are zero. Since in* applied to an odd-
dimensional primitive is non-zero, Sq£]+lyn_l 0= 0 if and
. 23+1 , .2, 2j+1
only if Sq*] (Q l*yn—l,0)= 0. Thus Sq*j yn_l’0= 0.

Let j: SU(n) - SU(n) /SU((n+1)/2) be the natural quo-

tient map. Note that sz* applied to an even-dimensional

primitive is non-zero. Thus to compute Sqijynml 07 it suf-
fices to compute Sqij(sz*yn‘l O)‘ By Proposition 1.15,

14
02 2

Q J«¥no1,0" (X(n-l)) . But the Steenrod operations on

(x(n_l))2 are given by Propositions 1l.16. [



§10. THE BOCKSTEIN SPECTRAL SEQUENCE FOR

H, (2 (SU(n) /SU(m)) ;&/p) AND THE

PROOF OF PROPOSITION 1.17

Recall that the Bockstein spectral sequence for a

space X is obtained from the exact couple

H, (X;%) P H, (X;%Z)

d e

H, (X;Z/2)

where p is multiplication by p, p is reduction mod-p and
d is the boundary homomorphism in the long exact sequence.
The rth differential in the spectral sequence is de-
noted Br. We will abuse notation and write er==y for
x,yeH, (X;Z/p) . Brx==y can be interpreted as follows:

r=1,. y is the mod-p

There exists zeH,(X;Z) such that dx=p
reduction of z.

To compute the differentials in the Bockstein spectral
sequence for H*(QZ(SU(n)/SU(m));%/p), we need the following

lemma which is a homology analogue to the Bockstein lemma

in [101].

i _p . . .
Lemma 10.1. Let F - X > B be an orientable fibration. Let

S _ .
ue Hn+l(B,%/p) and v e Hn+l(F,Z/p) be such that R~v=0 for l<s<r and in

the Serre spectral sequence, u transgresses to Brv. Then Bs(i*v)=0

1 r+1,.

for lss<r and thus 87 (i,v) is defined. Furthermore, p, (B (1,v))=

Blu up to indeterminacy given by p*(Bl(Hn+l(X;%/p))).

67
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. r ,
Proof: Since u transgresses to B8 v, there exists an ele=-

(X,F;%Z/p) such that Brv==8w where 3 1s the

ment w 1n Hn+l

boundary homomorphism in the long exact homology sequence
for a pair, and p,(w+w')=u for some w'eHn+l(X;%/p). Since

r-1 q
z and

ow = Srv, there exist a z in Hn(F;Z) such that dv=p
3w is the mod-p reduction of z.

Consider this on the chain level. Let ac Cn+lX be
such that the class of a represents w. Since ow is the

mod-p reduction of z, there exists b« CnF such that the

class of b represents z and da=Db-2c for some c ¢« CnX° Let
r-1

[-] denote the class of a cycle. Since d(i,v) = 2 [b] =
25" 2c43a] = 2%(el, 85 (i, v) = [c]. Also d(p,w) = [cl, so
sl (o) =p, ([c]). Thus p, (8571 (1,v)) = 8 (py(w)) =

Blu— Bl(P*(W')). f

C

Proof of Proposition 1.17: The differentials in the Bock-

stein spectral sequence for H*(QZ(SU(n)/SU(m));Z/p) are

given by Proposition 1.17. Recall that the Bockstein spec-
tral sequence is a spectral sequence of Hopf algebras [27.
We prove Proposition 1.17 by induction on n. Fix mz1l. Let
n=m+l. By Theorem 1.10, H*(Qz(SU(n)/SU(m));Z/p) is iso-

morphic to one of the following Hopf algebras:

(1) Let p=2.

P[Qixn—l| a=0]
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(ii) Let p>2.

a a
E[Q(p—l)xn—l! azO]@EﬂBQ(p_l)xn_l\ a>0]
Clearly, for all p, Bl(Q?p_l)xn_l)= BQ?p_l)xn_l, When p=2,
1 a _ a=1 2 2

Sgy =R8. Thus gQ ). Hence the E” for

(p—l)Xn-l_'(Q(p-l)Xn-l
the Bockstein spectral sequence for H*(QZ(SU(n)/SU(m));%/p)

is E[x Thus there can be no higher differentials. So

n-l]'

we have shown that Proposition 1.17 holds for m+l.

Assume that the differentials in the Bockstein spec-

tral sequence for H*(Q2(SU(n)/SU(m));%/p) are given as in

Proposition 1.17. We will show by induction on r that the

EY term for the Bockstein spectral sequence of

H*(Qz(SU(n+l)/SU(m));%/p) as a Hopf algebra is given by

the following:

When r=1,
1 2
E° = H, (27 (SU(n+l)/SU(m)) ;Z/p)
When r>1,
BT = E[Q"’(‘p_l)xi | Oza<s ) (i), ieA (n+l,m) UB (n+l,m)]
a ; | > | = T
® E[Q(p_l)xi ;a:zsn+l(1) >r, 1\Ap(n+l,m)]

Q@Ply g-1 | az0, szr, i¢A_(n+l,m),
P i,a P

ps_liecp(n+l,m)].

For r=1, the El term is clearly given as above.

Assume that the E' term is given as above. Note that



s (k) =

n

sn(k)-f-l: s

(1)

(11)

(ii1)

(iv)

70

(k) except when n==pak, In this case,

Sn+l
n+l(k). The following formulas give BT,

et(0® . x,) =80% . x. where axl, ieB_(n+l,m). The
“(p-1)71 (p-1) 71 ’ P !

above is simply a tautology. Note, however, that for

a and i1 in the above range BQ?p—l)Xiz 0, and when
a 2

=2, . = .
p BQ(p—l)Xl (Q(p—l)xl)
r, a .
8 (Q(p—l)xi) =0 where 0<ac< sn+l(1) ,
isAp(n+l,m)LJB(n+l,m). This follows because
IBr(Q?p_l)xi) [ = 2pai-2 < 2n, and because there are no
even-dimensional primitives of dimension less than 2n
in ET.
Br(y s-1. ) =0 where a20, s2r, i¢A_(n+l,m),

P i,a p
ps-liscp(n+l,m). The element y g_-1. is in the

i,a

image of H*(QZ(SU(n)/SU(m) ;Z/p) except when n=pS-li.

If n;:ps_li, then Bry‘s_l_ =0 since this is true in
pS~+i,a

H, (02 (SU(n) /SU(m) ;&/p). If n=p° ti, then

r . C . r -
BTy s-1. =0, since there are no primitives in E~ of
jo) 1,a
. . a+1
dimension 2p n=-3.

R (Q(p_l)xi)==0 where azzsn+l(1) > r, 15Ap(n+l,m).

a . . .
The element Q(p—l)xi is in the image of
H, (2% (SU(n) /SU(m));Z/p) . If n=p"i, the s_, (i) >«
. . . r,.a _ .
implies Sn(l) >r. Thus B (Q(p_l)xi)-o because this
is true in H*(Qz(SU(n)/SU(m));%/p). If n==pri, then
. 2 r,.a _
in H,(Q7(SU(n)/SU(mM));&/P), 87 (Q(_1)%3) =Y r-1
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i,a-r
H, (Q (SU(n+1) /SU(m)) :Z/p) 1is zero. Thus

But the image of y ,_q. in
p

a : 2
g* (Q(p 1)%¥;) =0 in H, (Q°(SU(n+l) /SU(m)) ;%/p)
r, .a _ Sy
B (Q( )xi)-ypr ll - where a2 sn+l(l)——r,

a L .
1eAp(n+l ,m). The element Q(p—l)xl is in the image
of H, (22 (SU(n)/SU(m));Z/p). If n=p  Ti, then

N . . S r,.a _
sn+l(1)-r implies sn(l)—-r. Thus 8 (Q(p=l)xi)—
Y r=1. since this is true in

o) i,a-r
H*(QZ(SU(n)/SU(m));%/p). If n==pr—li, then in the

Serre spectral sequence for the fibration

02 (SU(n) /SU(m)) ~ Q2(SU(n+l)/SU(m)) - @°s2PtL

The element Q transgresses to the element

(p- 1)?
ypr_2i S where Zn,2 is a choice of generator for
Hyoo l(9282n+l,%/p). This follows from Corollary 4.12
and Lemma 8.5. In H*(QZ(SU(n)/SU(m));Z/p)
r=1,.a
. . Thus by Lemma 10.1,
g (Q(p l)Xl) ypr 2i,a-r+l e
( ?p )Xi) is represented by an element in
% (0 2(SU n+l) /SU(n)) ;Z/p) whose image in
H*(9282n+l;x/p) is BQ? r+§z 5 UpP to indeterminacy.
I

But in this case, the indeterminacy 1is zero because

the image of H*(QZ(SU(n+l)/SU(m));Z/p) in

2.2n+1

H,(Q"S :Z/p) 1s generated by elements of the form

a . .
BQ(p—l)Zn,Z‘ Since ypr'li,a-r is an element of
H (Qz(SU(n+l)/SU(n));%/p) whose image in

*
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2.2n+1 : a-r+1
H (Q7S A d -
x /p) 1is BQ(p—l)zn,Z an ypr li,a—r

generates the module of primitives in dimension

a

Zpai—2 of Er, we must have that B(Q(p_l)xi)

Y r-1;

By (i) through (v), the Er+l term for the Bocksteiln
spectral sequence of H*(QZ(SU(n+l)/SU(n));%/p) is given as
above. This imélies that the differential in the Bockstein
spectral sequence for H*(QZ(SU(n+1)/SU(n));%/p) are given

by Proposition 1.17. U

Corollary 1.18 and Example 1.19 follow by inspection
of the differentials in the appropriate Bockstein spectral

sequence.
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