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I. Introduction

In a recent paper in this journal, Troy Davig and Eric Leeper (2007) provide a gen-
eralization of the Taylor principle, the proposition that central banks can stabilize the
economy by raising their interest-rate instrument more than one-for-one in response
to higher in�ation. The Taylor principle was orginally discussed in the context of
a constant parameter new-Keynesian model;1 Davig and Leeper generalize this prin-
ciple to a class of forward-looking Markov-switching rational expectations models.
Reduced form Markov-switching models have been popular tools for studying a wide
range of economic issues (Sims and Zha, 2006), including changes in the monetary
transmission mechanism, and the Davig-Leeper extension of the Taylor principle to
forward looking environments is important since it permits the analysis of alternative
policies within a rational expectations framework.

II. The Regime Switching Model

The New-Keynesian model analyzed by Davig and Leeper has two private sector
equations,

xt = Etxt+1 − σ−1(it − Etπt+1) + uD
t , (1)

πt = βEtπt+1 + κxt + uS
t , (2)

where xt is output, πt is in�ation, it is the nominal interest rate, uD
t is an aggregate

demand shock, and uS
t is an aggregate supply shock. The variables πt and it are

percentage deviations from their steady state values and xt is the deviation of output
from its trend path. Davig and Leeper assume that uD

t and uS
t are bounded �rst order

autoregressive processes. To derive closed-form solutions, we simplify their example
by setting the autoregressive coe�cients to zero which implies that uD

t and uS
t are

bounded, mean zero, and i.i.d. random variables. Nothing of substance hinges on
this assumption and it has the advantage of simplifying our notation.

The policy rule is given by

it = αstπt + γstxt, (3)

where st is a 2-regime Markov process assuming values in {1, 2} with transition matrix
P = (pij) for i, j = 1, 2, with pij being the probability that st = j given that st−1 = i.

1See, for example, Woodford (2003) and the references therein.
1



2

As in Davig and Leeper, we assume that the fundamental shocks uD
t and uS

t are
independent of the Markov process st.

The private sector block, consisting of Equations (1) and (2), has three regime-
independent parameters, σ, β and κ. Uncertain monetary policy is represented by Eq
(3), the policy rule. This equation has two regime-dependent parameters, αst and γst ,
that capture the degree to which monetary policy responds to in�ation and output.

By substituting the policy rule (3) into Eq (1) and rearranging the terms, the
regime-switching new-Keynesian model can be written in matrix form as

Γstyt = Etyt+1 + Ψut, (4)

where

yt =

[
πt

xt

]
, ut =

[
uS

t

uD
t

]
, (5)

Γst =

[
β−1 −κβ−1

σ−1(αst − β−1) 1 + σ−1(γst + κβ−1)

]
, and Ψ =

[
β−1 0

−σ−1β−1 1

]
. (6)

III. The Taylor Principle in a Constant Parameter Model

Before explaining the regime switching model, we present a brief analysis of the role
of the Taylor principle in the context of the constant parameter model. Although this
model is well known, we review it because the properties of indeterminate equilibria
in this familiar context are essential to clarifying the results we will present for the
regime switching case.

The constant parameter new-Keynesian model is given by the equation,

Γyt = Etyt+1 + Ψut, (7)

where

Γ =

[
β−1 −κβ−1

σ−1(α− β−1) 1 + σ−1(γ + κβ−1)

]
.

A solution to Eq (7) is a stochastic process, satisfying this equation, that describes
how the vector of variables yt evolves through time. Depending on the values of the
parameters there may be one or more solutions. One solution describes yt as a linear
function of the shocks. It is given by the expression,

yt = Gut (8)
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where

G = Γ−1Ψ =
1

σ + γ + κα

[
σ + γ κσ

−α σ

]
. (9)

Following McCallum (1983), we refer to Eq (9) as a minimal state variable solution.
Since the fundamental shock ut is bounded, the minimal state variable solution is also
bounded in the sense that there exists a real number N such that

||yt|| < N , for all t,

where || || is any well-de�ned norm. This solution is unique in the class of bounded
solutions if and only if all the roots of Γ are outside the unit circle.

Davig and Leeper focus on bounded solutions because local approximations to
the underlying dynamic stochastic general equilibrium model remain valid in the
neighborhood of a steady state and the boundedness assumption allows one to appeal
to approximation theorems which assert that the linear model is approximately valid
for small noise. Throughout this paper, we follow Davig and Leeper and consider
only solutions that remain bounded in this sense.

For some parameter con�gurations there may be an in�nite set of solutions to
Eq (7). When this occurs, each member of the set is said to be an indeterminate
equilibrium. The minimal state variable solution is a member of this set but there
are other solutions that are serially correlated and add additional volatility to the
time paths of the interest rate, output and in�ation. Indeterminate solutions have
attracted considerable recent attention as a possible explanation for U.S. time series
data in the period before the Volcker disin�ation of 1979-82.

In recent papers on the empirical importance of indeterminate equilibria, Lubik
and Schorfheide (2003, 2004) show how to write an indeterminate solution to the
constant parameter new-Keynesian model as a linear combination of the minimal
state variable solution and a �rst order moving average component. When there
are eigenvalues of Γ that are less than one in absolute value, the Lubik-Schorfheide
indeterminate fundamental solutions to Eq (7) have the form2

yt = Gut + V wt, (10)

2Although our analysis applies to equilibria with both fundamental and non-fundamental com-
ponents, we focus throughout this paper on indeterminate fundamental equilibria by setting the
sunspot shock to zero. These bubble-free solutions represent equilibrium responses of agents to
economically relevant fundamental shocks.
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wt = Λwt−1 + Mut, (11)

where the random variable wt is k-dimensional, M is any k×2 real matrix, V is 2×k,
Λ is k× k, and k is the number of eigenvalues of Γ that are less than one in absolute
value. The matrices V and Λ (obtained from the Schur decomposition of Γ) satisfy
the condition

V Λ = ΓV. (12)

By direct substitution one can verify that our proposed solution, represented by
Eqs (10) and (11), does indeed satisfy Eq (7). The following steps establish this
result,

Etyt+1 + Ψut = Et [Gut+1 + V (Λwt + Mut+1))] + Ψut, (13)

= V Λwt + Ψut, (14)

= ΓV wt + ΓGut, (15)

= Γyt. (16)

Eq (13) substitutes Eqs (10) and (11), led by one period, into the right hand side
of Eq (7). Taking expectations and using the property that ut+1 is a mean zero
random variable leads to Eq (14). Eq (15) follows from Eqs (12) and (9) and Eq (16)
is established by collecting terms in Γ and applying the de�nition of a solution, Eq
(10).

It is worth drawing attention to two special cases of the Lubik-Schorfheide solutions.
First, if all the eigenvalues of Γ are greater than one in absolute value, the minimal
state variable solution, Eq (8), is unique. A special case of the new-Keynesian model
occurs if γ = 0. This case has been important in the literature since it leads to a
particularly simple statement of the uniqueness condition which is satis�ed if |α| > 1.

When the central bank follows a policy of this kind in which it changes the interest
rate by more than one-for-one in response to a change in in�ation, the central bank
is said to follow the Taylor principle.

A second important special case occurs when Γ has only one eigenvalue less than
one in absolute value. In this case Λ is equal to this eigenvalue, and V is its associated
eigenvector. An example that has this property is provided by the parameterization
β = 0.99, σ = 1.0, κ = 0.17, γ = 0.0, and α = 0.92, For these parameters the matrix
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Γ is given by

Γ =

[
1.0101 −0.1717

−0.0901 1.1717

]
(17)

which has real roots of 1.2392 and 0.9426. The eigenvector associated with the eigen-
value of 0.9426 is [

−0.9306

−0.3659

]
(18)

and the indeterminate solution is

yt =

[
0.8648 0.1470

−0.7956 0.8648

]
ut +

[
−0.9306

−0.3659

]
wt (19)

where

wt = 0.9426wt−1 + Mut. (20)

This example is important because Lubik and Schorfheide (2004) have documented
that U.S. monetary policy in the period from 1960 to 1979 did not satisfy the Taylor
principle and that, as a consequence, the data were generated by an indeterminate
equilibrium of this form.

IV. The Generalized Taylor Principle in a Regime-Switching Model

In this section we brie�y describe Davig and Leeper's generalized Taylor principle.
Analogous to the constant parameter model, the regime-switching model also has a
minimal state variable solution,

yt = Gstut (21)

where

Gst = Γ−1
st

Ψ =
1

σ + γst + καst

[
σ + γst κσ

−αst σ

]
. (22)

Since the fundamental shocks are bounded, so is the minimal state variable solution.
The Taylor principle provides a simple rule to ensure uniqueness of equilibrium: it

works by guaranteeing that all the roots of a given matrix lie inside the unit circle.
One would like to �nd a similar condition to establish a region of the parameter
space for which the minimal state variable solution to Eq (4) is the unique bounded
equilibrium. This is a challenging problem since the parameters of the model are
functions of the switching variable st and these parameters enter multiplicatively
with yt. As a consequence, the regime-switching model is inherently nonlinear.
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To address the nonlinearity of the model, Davig and Leeper introduce additional
variables that coincide with the original variables in some regimes and they study an
expanded model that is linear in these newly de�ned objects. The new variables are
π1,t, π2,t, x1,t, and x1,t, which are random variables with the property

πt =

{
π1,t if st = 1

π2,t if st = 2
and xt =

{
x1,t if st = 1

x2,t if st = 2
. (23)

With these new random variables, Davig and Leeper derive the following linear
system from the original Markov-switching model Eq (4).3

BYt = AEtYt+1 + Cut, (24)

where

Yt =




π1,t

π2,t

x1,t

x2,t



, A =




βp11 βp12 0 0

βp21 βp22 0 0

σ−1p11 σ−1p12 p11 p12

σ−1p21 σ−1p22 p21 p22




, (25)

B =




1 0 −κ 0

0 1 0 −κ

σ−1α1 0 1 + σ−1γ1 0

0 σ−1α2 0 1 + σ−1γ2



, and C =




1 0

1 0

0 1

0 1




. (26)

Multiplying Eq (24) by A−1 transforms this equation into the form of Eq (7) where
Γ = A−1B and Ψ = A−1C. It follows from the results discussed in Section III that
Eq (24) has a unique bounded solution if and only if all the eigenvalues of Γ = A−1B

are greater than one in absolute value. This is an application of Davig and Leeper's
generalized Taylor principle to the case when the matrix A is nonsingular. More
generally, the principle asserts that all the generalized eigenvalues of (B, A) lie inside
the unit circle.

Davig and Leeper show, using De�nition (23), that a solution to Eq (24) can be
used to construct a solution to the original non-linear system, Eq (4): But this does
not establish an equivalence between the two systems. Are there solutions of Eq (4)
that cannot be represented as solutions of Eq (24)? This is an important question
because the generalized Taylor principle is useful only if uniqueness of a solution to

3Note that (78) and (79) in Appendix B of Davig and Leeper (2007, page 631) are the same as Eq
(4) in this comment. By substituting (80) through (85) into (78) and (79), they rewrite the system
in the expanded linear form given by (86) on page 632.
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the expanded linear system implies that equilibrium in the original model is also
unique. The following section establishes that is not the case by presenting a counter
example.

V. A Counterexample to the Generalized Taylor Principle

The generalized Taylor principle is a statement about the set of solutions to the
expanded linear model and, applied to this model, the statement is correct. As
discussed in Section IV, the Davig and Leeper paper proceeds however as if the
original Markov-switching system and the derived linear system were the same.4

The purpose of this section is to establish our claim that these two systems are not
the same by constructing an example in which the generalized Taylor principle holds
and hence the expanded linear model has a unique solution, but the original Markov-
switching system has a continuum of fundamental equilibria. Our example is based
on the parameterization β = 0.99, σ = 1.0, and κ = 0.17. These parameters are taken
from baseline case in Davig and Leeper (2007, page 616). We choose γ1 = γ2 = 0,
p11 = 0.8, and p22 = 0.95 as in the example used to construct Davig and Leeper's
Figure 2 on page 617. We consider the two policy regimes represented by α1 = 3.0

and α2 = 0.92, where the parameter values in the second regime are the same as
those used to construct an indeterminate example of the constant parameter model
in Section III of this comment. Substituting our chosen values into the expressions
for the matrices A and B from Eqs (25) and (26) one obtains the following values for
the absolute values of the eigenvalues of A−1B




1.5883

1.5883

1.2349

1.0167




. (27)

Since these all are greater than 1, Davig and Leeper's generalized Taylor principle
implies a unique bounded equilibrium of the expanded linear system, Eq (24). But

4See the text at the bottom of second column on page 616 of Davig and Leeper (2007) which
states: �The system to be solved consists of (26) and (32). To specify the system whose eigenvalues
determine whether there exists a unique bounded equilibrium, we follow the procedure for the
Fisherian model.� Note that (26) and (32) represent the original Markov-switching system. The
paper proceeds to derive the generalized Taylor principle; that is, a set of necessary and su�cient
conditions for existence of a unique bounded equilibrium to the expanded linear system (35) on page
617.
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it does not imply that if this principle is satis�ed the economic model, Eq (4), has a
unique equilibrium, as the following example demonstrates.

Using the parameter values introduced above, the matrix Γ2 from Eq (4) has an
eigenvalue of 0.9426 and an associated eigenvector of

[
−0.9306

−0.3659

]
. (28)

Notice that this eigenvalue of 0.9426 is less than p22 = 0.95 and consider the following
equations that represent our candidate fundamental equilibrium,

yt = Gstut + V wt, (29)

wt = Λstwt−1 + Mst,st−1ut, (30)

where

V =

[
−0.9306

−0.3659

]
, Λst =

{
0 if st = 1

0.9426
0.95

if st = 2
, Mst,st−1 =

{
0 if st = 1

M2,st−1ut if st = 2
,

and M2,st−1 is any 1 × 2 real matrix that may or may not depend on st−1. Notice
that |Λi| < 1 in both regimes and hence yt is bounded. Importantly, |Λ2| is equal
to the smallest root of Γ2 divided by p22 and the fact that it is less than one follows
from our parameterization in which the smallest root of Γ2 equals 0.9426 and p22 is
equal to 0.95. Notice that the form of our solution is close to those for the constant
parameter case with the important di�erence that the parameter matrices G and Λ

are di�erent in di�erent regimes. We chose to present a solution of this form because
it is directly comparable to the form of solution we derive for the expanded linear
system in Section VI. In that section we discuss further the relationship between the
two cases.

The following argument establishes that Eqs (29) and (30) do indeed de�ne a
solution to (4).

Etyt+1 + Ψut = pst,1Et[yt+1|st+1 = 1] + pst,2Et[yt+1|st+1 = 2] + Ψut (31)

= pst,1V Λ1wt + pst,2V Λ2wt + Ψut (32)

= pst,2V Λ2wt + Ψut, (33)

= ΓstV wt + ΓstGstut (34)

= Γstyt. (35)
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Eq (31) decomposes Etyt+1 using the law of iterated expectations. To obtain Eq
(32), substitute Eqs (29) and (30), led one period, into the right hand side of Eq (31)
and take expectations, using the fact that ut+1 has zero mean and is independent
{st+1, st, . . . }. Eq (33) follows from the fact that Λ1 = 0. To obtain Eq (34) notice
that if st = 1, then p12V Λ2wt = Γ1V wt because wt = 0 and if st = 2 then p22V Λ2wt =

Γ2V wt because V is the eigenvector of Γ2 corresponding to the eigenvalue p22Λ2. This
establishes that pst,2V Λ2wt = ΓstV wt. The second term of Eq (34) follows from the
construction of the fundamental solution, Eq (21), Ψ = ΓstGst . The �nal line follows
from collecting terms in Γst and substituting for yt from Eq (29).

This argument establishes that Eqs (29) and (30) de�ne a valid bounded solution
to (4). More generally, such a construction can be performed whenever Γi has an
eigenvalue less than pii in absolute value. In such cases, therefore, even if a cental
banker follows a policy that is consistent with Davig and Leeper's generalized Taylor
principle, the economy may still be subject to indeterminacy.

VI. Comparing Different Indeterminate Equilibria

Section V demonstrates that the generalized Taylor principle rules out some, but
not all indeterminate fundamental equilibria. How do solutions ruled out by this
principle di�er from those that are not? In this section we show how to write inde-
terminate solutions to the regime-switching model included by Davig and Leeper's
approach and we compare them to those fundamental equilibria presented in Section
V.

If we assume that both A and B, as given by Eqs (25) and (26), are invertible and
if there are k ≥ 1 eigenvalues of Γ = A−1B that are less than one in absolute value,
we may use the analysis of Section III, to write bounded indeterminate solutions to
Eq (24) in the form

Yt = B−1Cut + V wt, (36)

wt = Λwt−1 + Mst,st−1ut, (37)
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where recall that Yt = (π1,t, π2,t, x1,t, x2,t)
′, ut = (uS

t uD
t )′, and the term B−1C is given

by

B−1C =




σ+γ1

σ+γ1+κα1

κσ
σ+γ1+κα1

σ+γ2

σ+γ2+κα2

κσ
σ+γ2+κα2

−α1

σ+γ1+κα1

σ
σ+γ1+κα1

−α2

σ+γ2+κα2

σ
σ+γ2+κα2




. (38)

V is a 4 × k matrix, Λ is a k × k matrix and all the eigenvalues of Λ are less than
one in absolute value. The matrices V and Λ satisfy the restriction V Λ = ΓV and
are obtained from the Schur decomposition of Γ. Note that the fundamental shocks
come from {st, st−1, . . . ut, ut−1, · · · }, and thus the solution de�ned by Eqs (36) and
(37) depends only on fundamentals.

The term Mst,st−1 represents any k × 2 real matrix that may depend on both the
current and past regimes. Because ut is mean zero and independent of {st, st−1, . . . },
Et−1

(
Mst,st−1ut

)
= 0 and it is straightforward to verify that Eqs (36) and (37) are

bounded solutions to the expanded linear system (24). The proof is the same as that
given for the constant parameter case in the paragraph following Eq (12).

We have shown how to construct indeterminate solutions to Davig and Leeper's
expanded linear system; but this leaves open the question: Can one use bounded
indeterminate solutions to Eq (24) to construct solutions to the original nonlinear
system? To answer this question de�ne the matrices Π1, and Π2 as follows

Π1 =

[
1 0 0 0

0 0 1 0

]
and Π2 =

[
0 1 0 0

0 0 0 1

]
, (39)

and let
Vst = ΠstV. (40)

Now premultiply Eq (36) by Πst and write it as two separate subsystems for st =

{1, 2},

yt = Gstut + Vstwt, (41)

wt = Λwt−1 + Mst,st−1ut, (42)

where it follows from Eqs (6), (22), and (38), that

Gst = Γ−1
st

Ψ = ΠstB
−1C. (43)

Notice that these equations are similar to those that we presented in our counter ex-
ample, with the exception that the parameter matrix, Λ, is the same in both regimes.
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This restriction is key to understanding the di�erence between Davig and Leeper's
indeterminate solutions, that are ruled out by the generalized Taylor principle, and
solutions such as those presented in our counter-example, that are not.

A comparison of Eqs (29) and (30) with (41) and (42) establishes that these two
kinds of solutions have the �rst term in common, represented by Gstut, but di�er in
the second term since Eq (29) restricts the matrix Vst to be the same across regimes
while Eq (42) restricts Λst to be the same across regimes. Both solutions allow yt

to depend on the current and past policy regimes as well as on the current and past
demand and supply shocks and all of the equilibria that we consider in this comment
are driven purely by fundamentals.

The main di�erence between the solution given by Eqs (29) and (30) and those
given by Eqs (41) and (42) is the nature of the persistence of the process wt. In
Eqs (41) and (42) the persistence, which is governed by Λ, is independent of the
regime, while in Eqs (29) and (30), it can vary across regimes. Indeed, in a related
paper, Farmer, Waggoner, and Zha (2007) show that there exist general forms of
indeterminate equilibria that include as special cases both the solution represented
by Eqs (29) and (30) and the solution represented by Eqs (41) and (42).

We have demonstrated that the Davig-Leeper generalized Taylor principle does not
exclude all bounded fundamental solutions to the original economic model. While the
Davig-Leeper solutions are interesting, we see no economic reason to prefer one subset
of fundamental equilibria over another. The Davig-Leeper solutions restrict Λ to be
independent of regime whereas the complete class allows this matrix to be di�erent
in di�erent regimes.

VII. Conclusion

In the conventional linear new-Keynesian model, there may be bounded equilibria in
addition to the minimal state variable equilibrium for some parameter con�gurations.
These indeterminate equilibria are serially correlated and add additional volatility to
the time paths of the interest rate, output and in�ation. Since the in�uential empirical
papers of Clarida, Galí, and Gertler (2000) and Lubik and Schorfheide (2004), such
equilibria represent leading candidate explanations for U.S. time series data in the
period before the Volcker disin�ation of 1979-82.

The advent of Markov-switching models makes it possible to describe the periods
before and after 1980 as a single rational expectations model and it leads to the
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question: Were indeterminate equilibria responsible for the persistence and volatility
observed in the post-war U.S. time series data before 1980 after one accounts for the
possibility that agents rationally anticipated the possibility of future regime change?

To answer this question one would need to partition the parameter space into two
subsets: one associated with indeterminacy and the other with a unique equilibrium.
The parameter space in this more complete model includes not only the private sec-
tor and policy parameters in each regime, but also the probabilities of switching.
Davig and Leeper (2007)'s generalized Taylor principle takes a step towards answer-
ing this question. A complete partition of the parameter space into determinate and
indeterminate regions remains an important but challenging open question.
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