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I. INTRODUCTION 
 

 For the last 36 years after the seminal work of Rothenberg (1971), identification 
of structural vector autoregressions (SVARs) has remained to be an unresolved 
theoretical issue. Filling this theoretical gap is of vital importance because impulse 
responses based on SVARs have been widely used for policy analysis and for 
providing stylized facts for dynamic stochastic general equilibrium (DSGE) models.1  
 In this paper we present a general theory for global identification of SVARs that 
applies to both linear restrictions and nonlinear restrictions such as those imposed 
on impulse responses. Such theory is absent in the existing SVAR literature. In 
particular, we provide rank conditions for global identification of both identified and 
exactly identified SVARs. These rank conditions are sufficient for identification and 
are necessary and sufficient for exact identification. We also show that our rank 
conditions are easy to implement in practice.  
 In the existing literature, the rank conditions for identification that come close to 
being practical are those discussed by Giannini (1992) and Hamilton (1994, pages 
332-335). Nonetheless, they apply to local identification only, are mainly designed to 
analyze linear restrictions on the structural parameters, and can only be numerically 
verified at a particular point in the parameter space. In contrast, our theory extends 
the work of Fisher (1966, Chapters 3 and 4) and Hausman and Taylor (1983) about 
global identification, and our rank conditions apply not only to linear restrictions on 
structural parameters but also to certain nonlinear restrictions on the structural 
parameters, such as restrictions directly imposed on impulse responses. More 
important, we establish a powerful result such that if our rank conditions for global 
identification are satisfied at an arbitrary point in the parameter space, they will be 
satisfied almost everywhere. This result gives a simple and efficient way to determine 
whether the model is globally identified in a large parameter space before the 
estimation step. 
 Our necessary and sufficient conditions for exact identification complement 
another part of the existing literature. Rothenberg (1971) gives a necessary condition 
for exact identification, called “an order condition.” Rothenberg (1971)’s order 
condition is easy to implement by simply counting enough restrictions in total.2 In  
 1See, for example, Galí (1999), Smets and Wouters (2003), Fernández-Villaverde and Rubio-Ramírez 
(2004), Christiano, Eichenbaum, and Evans (2005), and Sims and Zha (2006a). 
 2Rothenberg (1971) gives sufficient conditions for global identification for certain types of restrictions 
on simultaneous-equation models, but these are not applicable to non-triangular SVARs. Dhrymes (1978), 
Hsiao (1983), and Dhrymes (1994), among others, give other rank conditions for traditional 
simultaneous-equation models. None of these conditions is workable for identification of SVARs, where 
the structural covariance matrix is restricted to be an identity matrix. See Bekker and Pollock (1986) and 
Leeper, Sims, and Zha (1996) for further discussions. 
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practice, this simple counting mechanism has been primarily used to check whether

a particular SVAR is exactly identified. Except for a triangular system, however, the

model may not be exactly identified even if there are n(n− 1)/2 linear restrictions

where n is the number of endogenous variables. Counterexamples are shown in

Sections IV.1 and V.4. Clearly, this is an important issue. If the SVAR under study

were incorrectly regarded as being globally identified, the empirical results implied

by this model would be misleading (Leeper, Sims, and Zha, 1996; Dufour and Hsiao,

forthcoming).

The practical distinction between local identification and global identification is

important. In Section IV.1, we highlight this importance through an analysis of a

simple simultaneous-equation VAR model studied by Hausman and Taylor (1983)

and Sims and Zha (1999). We derive theoretical results for this model and use them

to illustrate how a structural model can be locally identified but fail to be glob-

ally identified. These results provide an interesting case in which the model is lo-

cally identified everywhere but at the same time globally unidentified almost every-

where.

The theoretical results developed in this paper also differ from those for identi-

fication of traditional simultaneous-equation models. In traditional simultaneous-

equation modeling, there are no restrictions imposed on the correlation between

structural disturbances. Therefore, rank conditions for this kind of model do not

work for SVARs. The restriction of zero correlation between structural shocks as

imposed in the SVAR literature makes it a challenging task to derive workable rank

conditions, especially for restrictions imposed on impulse responses. On the other

hand, the zero-correlation restriction, as a restriction on the second moment of struc-

tural disturbances, helps achieve identification of structural equations that are oth-

erwise unidentifiable. We discuss this important issue in Section IV.2.

Because our theoretical results are new and different from those in standard text-

books, in Section V we illustrate how to apply our theorems to a number of widely-

used SVARs in the literature to determine whether these VARs are globally identi-

fied. We show that some slight and reasonable changes in restrictions may result in

a model that is not globally identified. These examples are also useful to show how

easy it is to apply our theory. In all cases, our theorems enable one to determine

whether the model is globally identified as a simple matrix-filling exercise.
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Once the global identification issue has been resolved, the next task involves

small-sample estimation and inference of the model. For this purpose, both clas-

sical and Bayesian methods often require repeated simulations of structural param-

eters. Such computation is quite expensive, especially when time-varying SVARs

are estimated (Uhlig, 1997; Canova and Gambetti, 2004; Cogley and Sargent, 2005;

Primiceri, 2005; Sims and Zha, 2006b; Gambetti, Pappa, and Canova, forthcoming).

To solve this problem, we use our theoretical results to derive efficient algorithms for

exactly identified models and for models identified with sign restrictions. Without

these new methods it would be prohibitively expensive to obtain accurate small-

sample inferences for many relevant problems. These efficient algorithms make it

possible to estimate a variety of models with different identifying restrictions, es-

pecially when dealing with time-varying features. Without them it would be prac-

tically infeasible to entertain a task of estimating a variety of time-varying SVARs

and performing the model comparison in their fit to the data, as did Rubio-Ramírez,

Waggoner, and Zha (2005).

The rest of the paper is organized as follows. Section II presents a general theory

of global identification. Section III derives necessary and sufficient conditions for ex-

act identification. Section IV discusses two important theoretical issues: local versus

global identification and differences between identifying a traditional simultaneous-

equation model and an SVAR model. Section V shows how to apply our theory to a

variety of SVAR models, whose identifiability has not been established before. Sec-

tion VI uses our theoretical results to derive efficient algorithms for small-sample

estimation and inference. Section VII concludes.

II. A THEORY OF GLOBAL IDENTIFICATION

In this section we present a unified, general theory for global identification of

SVARs with both linear and certain nonlinear restrictions. In Section II.1, we present

a general class of SVARs. In Section II.2, following Rothenberg (1971), we define

global and local identifications for this class of models. In Sections II.3 and II.4,

we introduce and discuss a wide class of identifying restrictions. These restrictions

encompass those in the literature. In Sections II.5 and II.6, we derive rank conditions

that are sufficient for global identification.
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Our theory is important for several reasons. First, our rank condition is for global

identification, while the recent VAR literature deals with local identification.3 Sec-

ond, it is very straightforward to check this rank condition by simply counting the

number of independent columns of a matrix. Third, our rank condition works for

both linear and certain nonlinear restrictions on the structural parameters of the

model, while rank conditions in the recent literature deals with local identification

or with linear restrictions on the structural parameters. Fourth, and more important,

we show that if the model is globally identified at any point of the parameter space,

it is then identified for almost all points.

II.1. The structural model. The class of SVARs we study has the general form

y′t A0 =
p

∑
`=1

y′t−`A` + z′tC + ε′t for 1 ≤ t ≤ T, (1)

where

• p is the lag length,

• T is the sample size,

• yt is an n× 1 vector of endogenous variables,

• zt is an nz × 1 vector of exogenous variables,

• εt is an n× 1 vector of exogenous structural shocks,

• A` is an n× n matrix of parameters for 0 ≤ ` ≤ p, and

• C is a nz × n matrix of parameters.

The distribution of εt, conditional on the past information, is Gaussian with mean

zero and covariance matrix In, the n× n identity matrix.4 The exogenous variables

zt are of full rank in the sense that the support of zt spans Rnz . This assumption

precludes any co-linear relationship among the exogenous variables. The initial

conditions, y0, · · · , y1−p, are taken as given.

Let

A′+ =
[

A′1 · · · A′p C′
]

3For example, Giannini (1992) works out a rank condition for local identification when restrictions

are placed on the contemporaneous impulse responses.
4Because only the first and second moments are used for identification, the important assumption

is that the reduced-form shocks u′t = ε′t A−1
0 form a family of distributions uniquely parameterized

by their means and variances.
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and

x′t =
[
y′t−1 . . . y′t−p z′t

]

for 1 ≤ t ≤ T. The dimension of A+ is m× n, where m = np + nz. The model (1)

can be written in compact form as

y′t A0 = x′t A+ + ε′t. (2)

The parameters of the structural model are (A0, A+) and we assume that A0 is in-

vertible. We denote the set of all structural parameters by PS. The set PS is an open

dense subset of R(n+m)n. The reduced-form representation implied by the structural

model (2) is

y′t = x′tB + u′t,

where B = A+A−1
0 , u′t = ε′t A−1

0 , and E [utu′t] = Σ = (A0A′0)
−1. The parameters

of the reduced-form model are (B, Σ), where Σ is a symmetric and positive definite

matrix. We denote the set of all reduced-form parameters by PR. The set PR is an

nm + n (n + 1) /2 dimensional sub-manifold of R(n+m)n but can be mapped, using

the Cholesky decomposition of Σ, to an open subset of Rnm+n(n+1)/2. For future

reference, define g : PS → PR by g (A0, A+) =
(

A+A−1
0 , (A0A′0)

−1
)

.

II.2. Identification. We begin by defining when structural parameters are observa-

tional equivalent.

Definition 1. Two parameter points, (A0, A+) and
(

Ã0, Ã+
)
, are observationally equiv-

alent if and only if g (A0, A+) = g
(

Ã0, Ã+
)
.

Definition 1 implies that two sets of structural parameters are observationally

equivalent if they have the same reduced-form representation. We have chosen to

define observational equivalence using the relationship between the structural pa-

rameters and their reduced-form representation as in Fisher (1966). An alternative

approach would be to define observational equivalence using the relationship be-

tween the structural parameters and the distribution of the endogenous variables yt

for 1 ≤ t ≤ T, as in Rothenberg (1971). These two definitions are equivalent because

of our distributional assumption about the exogenous variables zt and εt.

The following theorem gives an equivalent formulation of Definition 1 that is

more convenient in the analysis of SVAR models.
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Theorem 1. Two parameter points, (A0, A+) and
(

Ã0, Ã+
)
, are observationally equiv-

alent if and only if there exists an n × n orthogonal matrix P such that A0 = Ã0P

and A+ = Ã+P.

Proof. If A0 = Ã0P and A+ = Ã+P for some orthogonal matrix P, then

g (A0, A+) =
(

A+A−1
0 ,

(
A0A′0

)−1
)

=
(

Ã+PP−1Ã−1
0 ,

(
Ã0PP′ Ã′0

)−1
)

=
(

Ã+ Ã−1
0 ,

(
Ã0Ã′0

)−1
)

= g
(

Ã0, Ã+
)

.

Hence the structural parameters are observationally equivalent.

On the other hand, if the structural parameters are observationally equivalent,

then

A+A−1
0 = Ã+ Ã−1

0 and
(

A0A′0
)−1 =

(
Ã0Ã′0

)−1 .

The second equality implies that
(

Ã−1
0 A0

)′ (
Ã−1

0 A0

)
= I,

and therefore P = Ã−1
0 A0 is orthogonal and A0 = Ã0P. This result, together with

the fact that A+A−1
0 = Ã+ Ã−1

0 , implies that A+ = Ã+P. ¤

Theorem 1 implies that two sets of structural parameters are observationally equiv-

alent if we can find an orthogonal matrix P that rotates one into the other. This result

will be useful in developing both our theory and efficient algorithms. As one might

gather from this result, the set of all n× n orthogonal matrices plays a central role in

our analysis. Following the usual convention, we denote the set of all n× n orthog-

onal matrices by O (n).

As it is well known, an unrestricted SVAR is neither globally nor locally identified

and restrictions are needed for identification. To have as general definitions of global

and local identification as possible, we first define a set of restrictions in an abstract

way. The class of identifying restrictions considered in this paper will be defined in

a more concrete manner later in Section II.3.

Let R ⊂ PS denote the set of all restricted structural parameters. We now define

what we mean by global and local identifications of the restricted model.

Definition 2. The parameter point (A0, A+) ∈ R is globally identified if and only if

there is no other parameter point
(

Ã0, Ã+
) ∈ R that is observationally equivalent to

(A0, A+).
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According to Theorem 1, (A0, A+) ∈ R is globally identified if and only if

(A0P, A+P) /∈ R

for every orthogonal matrix P 6= In. Although this paper focuses on global identifi-

cation, we give the following definition of local identification for a comparison with

the existing literature. Let Bε (A0, A+) denote the open ε-ball centered at (A0, A+).

Definition 3. The parameter point (A0, A+) ∈ R is locally identified if and only if

there exists an ε > 0 such that no other parameter point
(

Ã0, Ã+
) ∈ R∩ Bε (A0, A+)

is observationally equivalent to (A0, A+).

By Theorem 1 and Definition 3, (A0, A+) ∈ R is locally identified if and only if

(A0P, A+P) /∈ R for every orthogonal matrix P 6= In sufficiently close to the identity

matrix. Although we have not been specific about the metric used in Definition 3,

any metric that delivers the usual topology gives an equivalent result. Thus, any

standard metric would be appropriate.

At this point it is important to discuss the notion of admissible parameters as in

Rothenberg (1971) and Dhrymes (1978). In some situations, one is not interested in

the set of all structural or reduced-form parameter points, but only in a subset that

satisfies a priori constraints. A primary example is that Σ must be symmetric and

positive definite so that the reduced-form model is always identified (Hsiao, 2001).

Another example appears when long-run impulse responses are used to identify the

model. In that case, we are interested only in the set of reduced-form parameters for

which long-run impulse responses exist.5 In general, structural or reduced-form

parameters are said to be admissible if they satisfy a priori constraints. We denote

the set of all admissible reduced-form parameters by Û and define the set of all

admissible structural parameters to be U = g−1(Û). Here, the notation g−1 does

not denote the inverse function of g, which does not exist, but instead refers to the

preimage under g. In this paper, we follow Rothenberg (1971) and assume that Û

is an open subset of PR and U is an open subset of PS. Because U = g−1(Û), if

(A0, A+) ∈ U, then (A0P, A+P) ∈ U for every P ∈ O (n).

5Although a long-run impulse response depends on structural parameters, its existence depends

only on its reduced form representation. As we shall see in Example 3 in Section II.4, long-run

impulse responses exist if and only if the matrix In −∑
p
`=1 B` is invertible, where B` = A`A−1

0 .
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II.3. Identifying restrictions. In the last subsection we have defined a set of restric-

tions in an abstract way with the objective of having definitions of global and local

identification as general as possible. In this subsection we will be more specific and

explicitly define a set of restrictions to be studied in the paper. This set will in-

clude a wide class of linear and nonlinear restrictions on structural parameters that

is used in the literature. Specifically, we study two important sets of restrictions.

The first set concerns the commonly used linear restrictions on the structural pa-

rameters (A0, A+). This class of restrictions includes the triangular identification

as described by Christiano, Eichenbaum, and Evans (1996) and the non-triangular

identification as described by Sims (1986), King, Plosser, Stock, and Watson (1991),

Gordon and Leeper (1994), Bernanke and Mihov (1998), Zha (1999), and Sims and

Zha (2006b).

The second set of restrictions concern nonlinear restrictions on the structural pa-

rameters. This class includes restrictions directly imposed on impulse responses,

such as short-run and long-run restrictions studied by Blanchard and Quah (1993)

and Galí (1992).6 The restrictions on impulse responses are nonlinear restrictions on

the structural parameter space. To determine whether a set of nonlinear restrictions

on the structural parameter space identifies the model globally is clearly a difficult

task. What is new in this paper is to find a way to transform nonlinear restrictions

on the original parameter space to linear restrictions on the transformed parameter

space represented by a set of k× n matrices. Working on the linear restrictions on the

transformed parameter space is, in general, a much easier task. The transformation

is represented by f (·), as described in the following condition.

Condition 1. Let U ⊂ PS be an open set of admissible structural parameter point and

f (·) be a mapping from U to a dense set of k× n matrices with f (U), where k ≥ 1.

Condition 1 is satisfied if and only if

(1) for any P ∈ O (n) and (A0, A+) ∈ U, f (A0P, A+P) = f (A0, A+) P;

(2) the function f (·) is continuously differentiable for all (A0, A+) ∈ U, and the

derivative of f (·) evaluated at (A0, A+) is of rank kn.

If the dimension of the transformed space k > m + n, then (2) in Condition 1

cannot hold. Therefore, it must be that 1 ≤ k ≤ m + n. In practice, the dimension

6Sign restrictions on impulse responses, as in Faust (1998), Canova and De Nicoló (2002), and

Uhlig (2005), are of a different nature and will be analyzed in Section VI.
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k is usually a multiple of n. For instance, if the identifying restrictions concern only

the contemporaneous matrix A0, then k = n. If identifying restrictions involve the

short-run and long-run restrictions of the Galí type (1992), then k = 2n.

At this point it is worth making a relevant observation. While our examples and

applications concentrate on linear restrictions and on restrictions concerning im-

pulse responses, our global identification theory is valid for linear restrictions on

any transformation f (·) of structural parameters that satisfies Condition 1. This ad-

vance highlights one of the most salient features of our paper: we develop a rank

condition for global identification of an SVAR with linear and nonlinear restrictions

on the structural parameters, while most of the recent SVAR literature focuses on

local identification with linear restrictions on the structural parameters.

In the previous subsection, we have mentioned the central role orthogonal matri-

ces play in identification of SVAR models. Condition 1 also requires f (·) to respect

right multiplication by orthogonal matrices. As one will see, some of the identi-

fication problems deal with whether or not certain subsets of possibly nonlinear

sub-manifolds of the structural parameter space are of measure zero. The second

requirement in Condition 1 allows us to transform this problem to whether or not

certain subsets of linear subspaces of the transformed space consisting of k× n ma-

trices are of measure zero (see Appendix A for a detailed analysis on this issue).

Linear restrictions on the transformed parameters f (A0, A+) can be represented

by k × k matrices Qj for 1 ≤ j ≤ n. Each matrix Qj has rank qj. The structural

parameters (A0, A+) satisfy the linear and nonlinear restrictions if and only if

Qj f (A0, A+) ej = 0, for 1 ≤ j ≤ n, (3)

where ej is the jth column of the n× n identity matrix In. The number of restrictions

on the jth equation is qj. Because the ordering of the columns of f (·) is completely

arbitrary, we assume without loss of generality that

q1 ≥ q2 ≥ · · · ≥ qn. (4)

When one applies the theory developed in this paper, it is important that this con-

vention be followed.

The restrictions given by (3) alone are insufficient to obtain either global or lo-

cal identification. To see this point, suppose that D is any n × n diagonal matrix

with plus or minus ones along the diagonal. Such matrices are orthogonal. Since
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Dej = ±ej, if (A0, A+) satisfy (3), (A0D, A+D) will also satisfy (3), and thus the sys-

tem cannot be identified. Consequently, one must employ a normalization rule to

determine the sign of each equation, as in standard textbooks (e.g., Dhrymes (1978,

p.284) and Greene (1993, p.590)). While the theory developed in this paper works for

any choice of normalization, it is worth noting that a poor choice can distort infer-

ence concerning impulse responses (Waggoner and Zha, 2003; Hamilton, Waggoner,

and Zha, 2007).

We now give a general definition of normalization as follows.

Definition 4. A normalization rule can be characterized by a set N ⊂ PS such that

(1) For any structural parameter point (A0, A+) ∈ PS, there exists an n × n

diagonal matrix D with plus or minus ones along the diagonal such that

(A0D, A+D) ∈ N.

(2) For any n × n diagonal matrix D 6= In with plus or minus ones along the

diagonal, N ∩ ND = ∅, where ND is the set of all elements of N multiplied

by the matrix D.

The set N is the collection of normalized structural parameters. The first condition

implies that for all structural parameters, the sign of each equation can be chosen

so that the normalization rule is satisfied. The second condition implies that this

choice is unique. Throughout this paper we assume that all the SVAR models are

normalized via some normalization rule N.

We now fully specify the set of restrictions represented by R using the function f ,

the sets U and N, and the matrices Qj’s:

R =
{
(A0, A+) ∈ U ∩ N |Qj f (A0, A+) ej = 0 for 1 ≤ j ≤ n

}
, (5)

where Qj is a k× k matrix of rank qj with q1 ≥ · · · ≥ qn and f (·) satisfies Condition

1. From this point on, when we make reference to the set of restrictions represented

by R, we refer to the set (5).

II.4. Examples of transformation. As discussed in Section II.3, the transformation

f (·) allows us to transform difficult nonlinear problems into easier linear problems.

In this subsection we show that linear restrictions on (A0, A+), as well as short-run
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and long-run restrictions on impulse responses, can be represented as linear restric-

tions on the columns of the transformed parameter matrix f (A0, A+). In particu-

lar, we use three well-established examples to show how to find the transformation

f (·).

Example 1. Linear restrictions on (A0, A+). For linear restrictions imposed on con-

temporaneous and lagged coefficients in individual structural equations, the trans-

formation f (·) is simply the identity mapping,

f (A0, A+) =

[
A0

A+

]
.

If the restrictions concern the contemporaneous coefficient matrix A0 only, then the

transformation f (·) is a projection onto the contemporaneous matrix, and hence

f (A0, A+) = A0. In either case, the requirement (1) of Condition 1 holds trivially.

The transformation is continuously differentiable. Since f is a linear projection for

this example, the derivative of f has the required rank.7 Thus, the requirement (2) of

Condition 1 holds as well. Finally, because U is the set of all structural parameters

for which A0 is invertiable, f (U) is the set of all k× n matrices for which the upper

n× n block is invertiable, which is a dense set.

Example 2. Short-run restrictions on impulse responses. The impulse response of

the ith variable at horizon h to the jth shock corresponds to the element in row i and

column j of

Lh =
(

A−1
0 J′Fh J

)′
, (6)

where

F =




A1A−1
0 In · · · 0

...
... . . . ...

Ap−1A−1
0 0 · · · In

Ap A−1
0 0 · · · 0




and J =




In

0
...

0




.

When h = 0, this means that L0 =
(

A−1
0

)′
. If f (·) is the transformation that maps

(A0, A+) to [
L′0 · · · L′p

]′
,

7The derivative of a linear function at any point is a linear function itself. Thus the derivative has

the required rank if and only if a projection is an onto function.
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it is straightforward to verify that f (·) satisfies the first requirement of Condition 1

and that the transformation is continuously differentiable. As in the first example,

f (U) consists of a dense set of all (n + m) × n matrices for which the first n × n

block is invertible.

To show that the rank of the derivative of f is (n + m) n, it suffices to show that

f has a differentiable inverse. Let us consider p = 2, which the reader can easily

generalize. In this case, the transformation f (·) is

f (A0, A1, A2) =
[

A−1
0 A−1

0 A1A−1
0 A−1

0

(
A2 + A1A−1

0 A1

)
A−1

0

]′
,

and its inverse is

f−1 (X0, X1, X2) =
[

X−1
0 X−1

0 X1X−1
0 X−1

0

(
X2 − X1X−1

0 X1

)
X−1

0

]′
,

which is differentiable.

Example 3. Long-run restrictions on impulse responses. To see how the identifica-

tion studied by Galí (1992) or Blanchard and Quah (1993) can be represented in our

framework, we need a representation of the long-run impulse response function.

When the ith variable of the structural model is in first difference, the long-run im-

pulse response of the ith variable to the jth shock is the element in row i and column

j of

L∞ =

(
A′0 −

p

∑
`=1

A′`

)−1

.

Galí and Blanchard and Quah focus on impulse responses at either a short-run hori-

zon (L0) or the infinite horizon (L∞) or both. For these cases, the transformation

takes one of the following forms:

f (A0, A+) = L0, f (A0, A+) = L∞, f (A0, A+) =

[
L0

L∞

]
.

Note that long-run impulse responses are defined only if the matrix In − ∑
p
`=1 B`,

where B` = A`A−1
0 is invertible. It can be easily verified that the first requirement of

Condition 1 is satisfied and that f (·) is continuously differentiable. Note that f (U)

consists of a set of all k× n matrices for which the first n× n block is invertible and

the second n× n block, if present, is also invertible. As in Examples 1 and 2, this set

is a dense subset of all k× n matrices.
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To see that the derivative of f has the required rank, we let f be a composition of

three functions. The first two functions are given by
[

A0

A+

]
→

[
A′0

A′0 −∑
p
`=1 A′`

]
,

[
X

Y

]
→

[
X−1

Y−1

]
,

and the third function is either a projection onto the first n × n block, a projection

onto the second n× n block, or the identity function. The first and third projections

are linear and the second projection is differentiable with a differentiable inverse.

Consequently, the composition has the required rank.

Example 4. If one wishes to impose restrictions on (A0, A+) jointly with restrictions

on impulse responses, one can combine the three transformations described above

as long as the rank of the derivative is kn. We would like to re-emphasize that

our analysis, not exclusively confined to these three examples of transformations, is

valid for linear restrictions on any transformation f (·) of structural parameters that

satisfies Condition 1.

II.5. A rank condition for global identification. In this subsection we develop a

sufficient condition for global identification. This rank condition is very general,

and in Section V we show how to apply this condition to a number of widely-used

models in the literature.

The following matrix is the key to the establishment of our rank condition. For

1 ≤ j ≤ n and any k× n matrix X, we define Mj (X) by

Mj (X)
(k+j)×n

=




Qj
k×k

X
k×n[

I
j×j

0
j×(n−j)

]


 .

We now state and prove the following key theorem.

Theorem 2. Consider an SVAR with restrictions represented by R. If (A0, A+) ∈ R

and Mj ( f (A0, A+)) is of rank n for 1 ≤ j ≤ n, then the SVAR is globally identified

at the parameter point (A0, A+).

Proof. To prove the theorem, it suffices to show that if the SVAR is not identified at

(A0, A+), then there exists a j such that Mj ( f (A0, A+)) is of rank strictly less than n.

By Theorem 1 and Definition 2, if the SVAR is not identified at (A0, A+), then there

exists a P =
(

pi,j
) ∈ O (n) such that P 6= In and (A0P, A+P) ∈ R. Since P 6= In, let
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j be the index of the first column of P that has a non-zero off-diagonal element. We

shall show that the rank of Mj ( f (A0, A+)) is strictly less than n.

Let qj = Pej − pj,jej, where ej is the jth column of In. Since qj 6= 0, it suffices

to show Mj ( f (A0, A+)) qj = 0 to complete the proof. Because both (A0, A+) and

(A0P, A+P) are in R, Qj f (A0, A+) qj = 0. Thus the upper block of Mj ( f (A0, A+)) qj

is zero. Because P is orthogonal and j is the index of the first column of P that has

a non-zero off-diagonal element, the first j − 1 elements of qj are zero and the jth

element of qj is zero by construction. This result implies that the lower block of

Mj ( f (A0, A+)) qj is also zero. Thus Mj ( f (A0, A+)) qj = 0 as required. ¤

Since the ordering of columns of f (·) is arbitrary and the condition in Theorem

2 may be satisfied under one ordering but not under another, one might wish to

experiment with all possible orderings when applying the rank condition. Choosing

a correct ordering, however, can eliminate unnecessary search and make it more

efficient to check the rank condition. We find that our convention of ordering the

columns of f (·) so that q1 ≥ · · · ≥ qn is, in general, sufficient to ascertain whether

there exists a set of structural parameters (A0, A+) such that Mj ( f (A0, A+)) is of

rank n for 1 ≤ j ≤ n.

In contrast to the well-established rank conditions of Giannini (1992) and Hamil-

ton (1994) for local identification, Theorem 2 establishes a rank condition for global

identification. Thus, even though an SVAR is locally identified according to Gian-

nini (1992) and Hamilton (1994, pages 332-335), it may not be identified globally (as

will be shown in Section IV.1).

In the case of linear restrictions on structural parameters, our rank condition is

closely related to Fisher (1966, chapter 4) and Hausman and Taylor (1983). These

earlier works focused on identification of one equation at a time and did not explic-

itly derive a workable condition for global identification of the whole system. Our

condition not only encompasses and unifies various sufficient conditions provided

by Fisher (1966, chapter 4) and Hausman and Taylor (1983), but also is much easier

to implement than the previous conditions.

It is important to note that our theory of global identification applies to a large

class of nonlinear restrictions on the structural parameters, while most of the earlier

work provides sufficient conditions only for linear restrictions (Fisher, 1966; Haus-

man and Taylor, 1983; Hamilton, 1994).
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II.6. Global identification almost everywhere. In the existing literature, the rank

conditions for local identification are (numerically) checked at a particular parame-

ter point. Such a point is typically chosen at the estimate of the model parameters.

Often it is important to know whether the model is identified at different points in

the parameter space prior to the estimation step. In this subsection we develop two

theorems to answer this question. We begin with the following key definition.

Define the set K by

K =
{
(A0, A+) ∈ R | rank

(
Mj ( f (A0, A+))

)
= n for 1 ≤ j ≤ n

}
(7)

According to Theorem 2, the model is globally identified on the set K. The next

theorem states that this set is open.

Theorem 3. The set K is open.

Proof. The function from the set of all (k + j)× n matrices to R, which maps a matrix

to the volume of the parallelepiped spanned by its columns, is continuous, and a

(k + j)× n matrix is of rank n if and only if the volume of the parallelepiped spanned

by it columns is non-zero. This result implies that the set of all (k + j)× n matrices

of rank n is open, and since f (·) is continuous, the set of all (A0, A+) ∈ R such that

Mj ( f (A0, A+)) is of rank n will also be open. ¤

Theorem 3 is important for the following reasons. If the structural parameter

point (A0, A+) ∈ R satisfies the rank condition, then there exists a neighborhood

around (A0, A+) such that all the structural parameters within that neighborhood

satisfy the rank condition. The implication of this result is that if the model is glob-

ally identified at the estimated value of the structural parameters, there is no need to

check if it is globally identified at nearby points. The next theorem, building on The-

orem 3, gives an even stronger result: if the model is globally identified at any point

in the structural parameter space, the model is, in fact, globally identified almost

everywhere.

Theorem 4. Either K is empty or the complement of K in R is of measure zero in R.

Proof. The proof is provided in Appendix B. ¤

This theorem is powerful because it gives a practical and efficient way of checking

whether the model is globally identified almost everywhere prior to the estimation

step. It follows from this theorem that one can randomly choose an element of R
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and then check the rank condition. If the rank condition is satisfied, we know that

the model is globally identified almost everywhere. In particular, we do not need

to perform an brute-force search to determine if the model is globally identified at

different points in the parameter space. This result makes our rank condition both

powerful and extremely easy to apply.

III. EXACT IDENTIFICATION

In the last section we study globally identified models that includes overidentified

cases. Since much of the SVAR literature involves exactly identified models, we

show in this section how the sufficient condition for global identification described

in Section II.5 becomes a necessary and sufficient condition for exact identification.

One familiar class of exactly identified SVARs is that linear restrictions on A0 are

triangular as defined below.

Definition 5. Let the transformation f (·) be given by f (A0, A+) = A0 so that the

SVAR is identified via linear restrictions on the contemporaneous matrix A0. The

restrictions on A0 are said to be triangular if and only if there exists an invertible

matrix P1 such that the matrix P1 f (A0, A+) is triangular.

The intuitive interpretation of Definition 5 is that identifying restrictions A0 are

triangular if A0 can be transformed into a triangular matrix. The recursive identifi-

cation of Christiano, Eichenbaum, and Evans (1996) is a classic example of triangular

restrictions on A0. Because there are exactly identified SVARs in the SVAR literature

that have non-triangular restrictions, we now give a precise definition of exact iden-

tification. Our definition differs slightly from Hamilton (1994, page 250)’s definition

and, as we shall see below, the difference is crucial to understanding SVARs with

non-triangular restrictions on A0.

Definition 6. Consider an SVAR with restrictions represented by R. The SVAR is

said to be exactly identified if, for almost any admissible reduced-form parameter

point (B, Σ), there exists a unique structural parameter point (A0, A+) ∈ R such

that g (A0, A+) = (B, Σ).

According to Definition 6, an SVAR is said to be exactly identified if, for almost

any point in the admissible reduced-form parameter space, there exists a unique
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set of structural parameters that implies these reduced-form parameters. In con-

trast, Hamilton (1994, page 250) defines exact identification by insisting that for any

(not just for almost any) point in the admissible reduced-form parameter space, there

exists a unique set of structural parameters that implies these reduced-form param-

eters. As stated in the following theorem, it turns out that Hamilton’s definition

precludes all SVAR with non-triangular linear restrictions on A0 from being exactly

identified.

Theorem 5. Let the transformation f (·) be given by f (A0, A+) = A0 so that the

SVAR is identified via linear restrictions on the contemporaneous matrix A0. If, for

every reduced-form parameter point (B, Σ), there exists a unique structural param-

eter point (A0, A+) ∈ R such that g (A0, A+) = (B, Σ), then the restrictions on A0

must be triangular.

Proof. The proof is provided in Appendix D. ¤

Theorem 5 is important because it implies that Definition 6, not Hamilton (1994)’s

original definition, is needed to allow for the possibility of non-triangular models to

be exactly identified, such as the simultaneous-equation model studied by Hamil-

ton (1994, pages 332-335) and other non-triangular exactly identified models in the

SVAR literature.

While Definition 6 deals with the reduced form parameters, it is often useful to

work with an equivalent formulation of exact identification in the form of structural

parameters. The following theorem gives this formulation.

Theorem 6. Consider an SVAR with restrictions represented by R. The SVAR is ex-

actly identified if and only if, for almost every structural parameter point (A0, A+) ∈
U, there exists a unique matrix P ∈ O (n) such that (A0P, A+P) ∈ R.

Proof. Let Ĝ be
{
(B, Σ) ∈ Û | there is not a unique (A0, A+) ∈ R s.t. g (A0, A+) = (B, Σ)

}
(8)

and let G be

{(A0, A+) ∈ U | there is not a unique P ∈ O (n) s.t. (A0P, A+P) ∈ R} . (9)

Note that G = g−1 (
Ĝ

)
. Definition 6 states that an SVAR model is exactly identified

if and only if Ĝ is of measure zero, and Theorem 6 states that an SVAR is exactly
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identified if and only if G is of measure zero. Consider the function from PR ×
O (n) to PS to which maps (B, Σ)× P to

(
TP, BP′T−1), where T is the unique lower

triangular matrix with positive diagonal such that TT′ = Σ−1. The matrix T can

be obtained from the Cholesky decomposition of Σ−1. This function and its inverse

are continuously differentiable; Ĝ ×O (n) maps to G. Thus it follows that G is of

measure zero if and only Ĝ is of measure zero. ¤

Theorem 6 states that if an SVAR is exactly identified, there exists a unique or-

thogonal matrix P such that (A0P, A+P) satisfies the identifying restrictions for al-

most any value of unrestricted structural parameters (A0, A+). This result is vital to

finding efficient algorithms for small-sample estimation and inference of an exactly

identified model, as shown in Section VI.

III.1. Rank conditions for exact identification. We are now ready to prove the rank

conditions for exact identification. The well known order condition for exact iden-

tification implied by Rothenberg (1971) states that the total number of restrictions

must be equal to n(n − 1)/2. This necessary condition is commonly used in the

SVAR literature. In what follows, we prove that if Rothenberg (1971)’s order con-

dition is satisfied for exact identification, the sufficient condition in Theorem 2 be-

comes necessary as well.

Theorem 7. Consider an SVAR with restrictions represented by R. The SVAR is ex-

actly identified if and only if the total number of restrictions is equal to n (n− 1) /2

and the rank condition in Theorem 2 is satisfied.

Proof. The proof is provided in Appendix C. ¤

Theorem 7 not only implies that our definition of exact identification, Definition 6,

is consistent with the traditional definition (such as Rothenberg’s order condition),

but it also gives us a checkable necessary and sufficient condition for exact identi-

fication. We now show that there is a more powerful condition, one that does not

even involve checking the rank of any matrix but requires checking only whether

the numbers of restrictions satisfy an appropriate order. This important result is

stated in the following theorem.

Theorem 8. Consider an SVAR with restrictions represented by R . The SVAR is

exactly identified if and only if qi = n− j for 1 ≤ j ≤ n.
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Proof. The proof is provided in Appendix C. ¤

Note that the rank condition in Theorem 8 is a simple counting exercise. The nec-

essary condition of Rothenberg (1971) simply counts the total number of restrictions.

Our necessary and sufficient condition not only counts the number of restrictions

but also requires that the restrictions follow a certain pattern equation by equation.

As much of the existing literature deals with exactly identified SVARs, the simple

counting condition in Theorem 8 applies to a wide range of identifications, includ-

ing the nonlinear restrictions on (A0, A+) described in Section II.4.

In addition to the powerful rank condition for exact identification, Theorem 8

forms the basis for efficient Bayesian and classical small-sample methods for esti-

mation and inference. For an exactly identified SVAR, Theorem 6 states that there

exists an unique orthogonal matrix P such that (A0P, A+P) satisfies the restrictions

for almost every unrestricted structural parameter point (A0, A+). This result gives

us a practical way to find the set of structural parameters that satisfy the identifying

restrictions, if one is able to draw unrestricted structural parameters or reduced-

form parameters. For each draw of unrestricted structural parameters, one needs to

find only an orthogonal matrix P that rotates the unrestricted draw to the one that

satisfies the restrictions.8 If the original draw is for the reduced-form parameters

(B, Σ), one can rotate the Cholesky decomposition of Σ to get a draw that satisfies

the restrictions. The difficulty in this whole procedure is to build an efficient algo-

rithm to find the needed orthogonal matrix P. As will be shown in Section VI, such

an algorithm can be found. We will also show that for systems in which the restric-

tions on f (·) can be permuted to be triangular, there is an even faster algorithm.

Why is this result important? Take as an example an SVAR with restrictions on

impulse responses that is exactly identified. The existing methods in the literature

typically solve a system of nonlinear equations. This traditional approach becomes

very inefficient if a large number of simulations is required to obtain accurate results

for small-sample estimation and inference. When time-varying SVARs are studied

(Canova and Gambetti, 2004; Cogley and Sargent, 2005; Primiceri, 2005; Sims and

Zha, 2006b), the traditional approach is practically infeasible because the system of

8This procedure applies to the maximum likelihood estimation as well. One first obtains a maxi-

mum likelihood estimate of the parameters in an unidentified system and then uses P to rotate these

parameters to get the estimate of the structural parameters that satisfies the identifying restrictions.
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nonlinear equations would have to be solved for each possible state of the structural

parameters. In contrast, Theorem 8 implies that the restrictions for exactly identified

systems have a very special structure. This structure can be exploited to obtain an

efficient method for finding the orthogonal matrix P, which in turn leads to efficient

small-sample simulation techniques, as will be described in Section VI.

IV. TWO THEORETICAL ISSUES

In this section we address two important theoretical issues. The first issue con-

cerns the difference between global identification and local identification. We con-

sider a model that is locally identified but not globally identified. This model is

particularly insightful because it shows that the rank condition in the existing liter-

ature for local identification does not provide any guidance as to whether or not the

model is globally identified.

The second issue highlights how the identification theory developed in the tra-

ditional simultaneous-equation literature cannot be applied to identification of an

SVAR. In particular, we show the restrictions on the covariance matrix of structural

shocks help identify Hamilton (1994)’s demand-supply model in which the sup-

ply equation is not identified in the traditional simultaneous equation framework.

Using the theory developed in Sections II and III, we show that the same supply

equation is globally identified in the SVAR framework.

IV.1. Local vs. global identification. To illustrate how an SVAR can be locally but

not globally identified, we consider the following three-variable example taken di-

rectly from Sims and Zha (1999) and Fubac, Waggoner, and Zha (2007):9

A0 =




a11 0 a13

a21 a22 0

0 a32 a33


 . (10)

This simple model has no lags, and there is only one restriction on each equation

such that q1 = q2 = q3 = 1. The model satisfies Rothenberg (1971)’s order condition

that the total number of restrictions equals n(n − 1)/2 = 3, and using the proce-

dure outlined in Hamilton (1994, pages 332-335), we shall show that at a particular

9Fubac, Waggoner, and Zha (2007) show that this contemporaneous SVAR model can be derived

from the three-variable forward-looking New-Keynesian model studied by Cochrane (2006).
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parameter point the model is locally identified.10 According to Theorem 8, how-

ever, this model is not exactly identified. Moreover, a deeper analysis of this simple

model reveals that the space of reduced form parameters divides into three sets,

a set of positive measure on which the model is locally identified but not globally

identified, a set of positive measure on which there is no representation of structural

parameters satisfying the restrictions implied by (10), and a set of measure zero on

which the model is globally identified. This example is instructive because it out-

lines what can go wrong when the model is locally identified but fails to be globally

identified.

To apply Hamilton (1994, pages 332-335)’s procedure, we first need to transform

the matrix (10) into Hamilton’s notation. This re-parameterization involves two ma-

trices, B0 and D, given by

B0 =




1 a21/a11 0

0 1 a32/a22

a13/a33 0 1


 and D =




a−2
11 0 0

0 a−2
22 0

0 0 a−2
33


 . (11)

For the model to be locally identified, the matrix

J =
[
−2D+

n (Ω⊗ B−1
0 )Sb D+

n (B−1
0 ⊗ B−1

0 )Sd

]

must be of full column rank, where

Sb =




0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0




, Sd =




1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1




,
(

D+
n

)′ =




1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0

0 0.5 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0.5 0 0.5 0

0 0 0 0 0 0

0 0 0 0 0.5 1




and Ω = B−1
0 D(B−1

0 )′. Even in this simple example, it is difficult to determine ana-

lytically whether the matrix J is of full column rank, but given any particular choice

of the parameter point, it is easy to determine the rank of J using any numerical

10Alternatively, one can use Rothenberg (1971)’s information matrix to check if the model is locally

identified, as suggested by Sargent (1976) and recently employed by Iskrev (2007).
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linear-algebra package such as Matlab or Gauss. For instance, if a11 = a22 = a33 = 1

and a13 = a21 = a32 = 2, then J is of rank 6, and thus the model is locally identified.

The model is not, however, globally identified at that point. To see why, consider

the orthogonal matrix P

P =




2/3 1/3 −1/3

−1/3 2/3 2/3

2/3 −1/3 2/3


 .

It is straightforward to show that

Ã0 = A0P =




2 0 1

1 2 0

0 1 2




is observationally equivalent because Ã0 satisfies the restrictions.

Is this choice of the parameter point so special that the model may still be globally

identified at other parameter points? Given the high dimension of this model, this

question cannot be answered by any numerical procedure. To answer this question,

we prove below that all the reduced-form parameters can be grouped into three dis-

tinct sets. The first set has a positive measure on which none of the elements can be

represented by structural parameters satisfying the restrictions. The second set also

has a positive measure on which every element has two structural representations

that satisfy the restrictions. The third set has measure zero on which every element

has a unique structural representation that satisfies the restrictions.

To prove these results, we begin by decomposing the reduced-form covariance

matrix as Σ = C′C, where C is an upper triangular matrix

C =




c11 c12 c13

0 c22 c23

0 0 c33


 .

Define b1, d1, b2, and d2 by

b1 = 2c2
13c2

22c2
33 − 2c12c13c23c22c2

33 + c2
22c4

33,

d1 = (c13c22 − c12c23)
2 c2

22c4
33

(
c2

13 + c2
23 + c2

33

)
,

b2 = 2c2
23c2

22c2
33 + 2c12c13c23c22c2

33 + c2
22c4

33,

d2 = c2
23

(
c2

12 + c2
22

)
c2

22c4
33

(
c2

13 + c2
23 + c2

33

)
.
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It can be verified that b2
1 − 4d1 = b2

2 − 4d2.

Proposition 1. Only one of the three following cases can occur:

(1) If b1 < 0 or b2 < 0 or b2
1 − 4d1 = b2

2 − 4d2 < 0, there exists no matrix A0 that

satisfies the restrictions and C′C = Σ = (A0A′0)
−1.

(2) If b1 ≥ 0 and b2 ≥ 0 and b2
1 − 4d1 = b2

2 − 4d2 > 0, there are exactly two

matrices, A0 and Ã0, that satisfy the restrictions and C′C = Σ = (A0A′0)
−1 =(

Ã0Ã′0
)−1.

(3) If b1 ≥ 0 and b2 ≥ 0 and b2
1 − 4d1 = b2

2 − 4d2 = 0, there exists a unique matrix

A0 that satisfies the restrictions and C′C = Σ = (A0A′0)
−1.

Proof. If (A0A′0)
−1 = Σ = C′C, then (CA0)

′ CA0 = I, which implies that CA0 is

orthogonal. But

CA0 =




a11c11 + a21c12 a22c12 + a32c13 a13c11 + a33c13

a21c22 a22c22 + a32c23 a33c23

0 a32c33 a33c33


 ,

while any orthogonal matrix with a zero in the first column and third row must be

of the form 


γ −αλ βλ

λ αγ −βγ

0 β α


 or




γ αλ −βλ

λ −αγ βγ

0 β α


 ,

where α2 + β2 = 1 and γ2 + λ2 = 1. The first column and third row of these two

representations of CA0 gives us expressions for α, β, γ, and λ. The upper right hand

block of these representations give us equations that we can solve for a11, a13, a21,

and a22 to obtain

a11 = ±−a2
32c12c13c22 + a2

32c2
12c23 + a2

33c2
12c23 + a2

33c2
22c23

a32a33c11c2
22c33

,

a13 = − a2
32c13c22 + a2

33c13c22 − a2
32c12c23 − a2

33c12c23

a33c11c22
,

a21 = ± a2
32c13c22 − a2

32c12c23 − a2
33c12c23

a32a33c2
22c33

,

a22 = − a2
32c23 + a2

33c23

a32c22
,

where the signs of a11 and a21 are chosen to be consistent with the normalization

rule. Substituting all of this into the equations α2 + β2 = 1 and γ2 + λ2 = 1 and
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simplifying, gives one linear and one quadratic equation in terms of a32 and a33.

These can be solved to obtain

a2
33 =

b1 ±
√

b2
1 − 4d1

2c2
22c4

33
(
c2

13 + c2
23 + c2

33
) ,

a2
32 =

b2 ∓
√

b2
2 − 4d2

2c2
22c4

33
(
c2

13 + c2
23 + c2

33
) .

Because both a33 and a32 must be real, we must have that b1 ≥ 0, b2 ≥ 0, and

b2
1 − 4d1 = b2

2 − 4d2 ≥ 0 in order for a solution to exist. There will be only one

solution if b2
1 − 4d1 = b2

2 − 4d2 = 0 and two solutions if b2
1 − 4d1 = b2

2 − 4d2 > 0. ¤

Clearly, every structural parameter point is locally identified. On the other hand,

the set of structural parameters that are globally identified is of measure zero be-

cause the constraint b2
1 − 4d1 = b2

2 − 4d2 = 0 must be met. This powerful example

shows how a structural model can be locally identified but fail to be globally iden-

tified and highlights practical distinctions between local identification and global

identification.

IV.2. Identifying supply and demand. We use Hamilton (1994, Sections 9.1 and

11.6)’s supply-demand model of the orange market as a study case to highlight the

prominent role of restrictions on the covariance matrix of structural disturbances

in achieving identification of an SVAR. Let pt be the log of the price of the good

of interest (oranges), qt be the log of the quantity of such a good, and wt indicate

an exogenous variable (weather) that affects the supply of oranges. For expository

illustration, we analyze the following Hamilton model with no lag:

a0,31wt = εw
t , Weather (12)

a0,12qt + a0,22 pt = εd
t , Demand (13)

a0,13qt + a0,23 pt + a0,33wt = εs
t, Supply (14)

where −a0,22/a0,12 < 0 (a negatively sloped demand curve) and −a0,23/a0,13 > 0 (a

positively sloped supply curve).

In the traditional simultaneous-equation framework where no restrictions are im-

posed on the covariance matrix of the structural disturbances εd
t and εs

t, it is well

known that the demand equation is identified. The instrumental variable wt shifts

the supply curve but not the demand curve. The identification of such a demand
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equation is a textbook example. As also discussed in most textbooks, however, the

supply equation cannot be identified. The reason is that there is no instrumental

variable to shift the demand schedule so as to trace out the slope of the supply

curve. Another way to understand this result is to replace the supply equation with

an arbitrary linear combination of the demand and supply equations, while leaving

the demand equation unchanged. This replacement does not violate any restrictions

and thus the supply equation is not identified.

In the SVAR framework, such a replacement is no longer harmless. An arbitrary

linear combination of the supply and demand equations will not preserve the lack

of correlation between the supply and demand disturbances εd
t and εs

t. Only an or-

thonormal linear transformation can preserve the orthogonal nature of these struc-

tural shocks. Does there exist a unique orthogonal matrix P such that A0P satisfy

the restrictions implied by (12) - (14)? If so, both the demand and supply equations

are exactly identified.

To study this issue, we express this simultaneous-equation model in the form of

(1) as

A0 =




0 a0,12 a0,13

0 a0,22 a0,23

a0,31 0 a0,33


 . (15)

For the identification represented by (15), n = 3 and there are a total of three re-

strictions (= n(n − 1)/2), satisfying Rothenberg (1971)’s order condition for exact

identification. While one can use the rank condition given by Hamilton (1994, page

332-335) to determine whether the model is identified locally around a given point

in the parameter space, the question is whether the model is globally identified.

To answer this question, we apply Theorem 8 by writing (15) in the form of (3).

The transformation is

f (A0, A+) = A0,

and the restrictions can be represented by

Q1 =




1 0 0
0 1 0
0 0 0


 , Q2 =




0 0 1
0 0 0
0 0 0


 , Q3 =




0 0 0
0 0 0
0 0 0


 .

We have ordered the equations so that q1 ≥ q2 ≥ q3, where q1 = 2, q2 = 1, and q3 =

0. Since qj = n− j, it follows directly from Theorem 8 that the non-triangular SVAR

represented by (15) is exactly identified. Of course, there are points at which neither
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the demand nor the supply equation is identified. As discussed in Hamilton (1994,

pages 332-335), the model is not identified at the parameter values with a0,33 =

0. The set G, defined by (9), contains all such locally unidentified points but has

measure zero according to Theorems 6 and 8.

In comparison with the traditional simultaneous-equation framework discussed

at the beginning of this subsection, the linear restrictions represented by (15), to-

gether with the usual SVAR restrictions that εt’s are uncorrelated as a second-moment

condition, amount to the traditional simultaneous-equation assumption that one of

the two variables pt and qt in the demand-supply system is predetermined. In other

words, identification of the demand equation is equivalent to identifying the de-

mand shock εd
t . Since εd

t and εs
t are uncorrelated, the demand shock can be used as a

“shifter” to move the demand curve up and down along the supply curve so as to

achieve identification of the supply equation (Hausman and Taylor, 1983).

V. APPLICATION

The theory presented in Sections II and III establishes easy-to-check rank condi-

tions for global identification and for exact identification. Section IV illustrates the

importance of using our rank conditions for global identification instead of the exist-

ing conditions for local identification and explains why our theoretical results differ

from those used for traditional simultaneous-equation models.

Since our theoretical results, particularly about restrictions on impulse responses,

are newly developed, it is both essential and instructive to show the reader how our

theory can be applied in practice. In this section, we demonstrate how to apply our

theory to a number of existing SVARs studied in the literature. For almost all these

models, global identification has not been formally established. For the examples

of nonlinear restrictions on (A0, A+), we show how to use f () to transform these

nonlinear restrictions to linear ones in the transformed parameter space.

V.1. Triangular SVARs. If restrictions on A0 are triangular, as in Eichenbaum and

Evans (1995) and Christiano, Eichenbaum, and Evans (1996), the model is (obvi-

ously) exactly identified. Applying Theorem 8 becomes trivial.

V.2. Identification through the lag structure. Restrictions on the lag structure can

be used to aid identification. As an illustration, we revisit the supply-demand model

in Section IV.2 with the additional restriction a0,33 = 0. In this case, the model is not
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identified either globally or locally because the second and third equations cannot

be distinguished. Global identification, however, can be restored through the lag

structure. To see this point, we expand the system to include A1. The restrictions for

this one-lag model can be represented as

A0 =




0 a0,12 a0,13

0 a0,22 a0,23

a0,31 0 0


 , and A1 =




0 a1,12 a1,13

0 a1,22 a1,23

a1,31 0 a1,33


 , (16)

and the transformation is

f (A0, A+) =

[
A0

A1

]
. (17)

For this model, Qj’s for j = 1, 2, 3 are

Q1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0




, Q2 =




0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, and Q3 =




0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.

Since a1,33 6= 0, it follows from the Qj’s that q1 = 4, q2 = 2, and q3 = 1, and thus

the total number of restrictions (∑3
j=1 qj) is 7, greater than n(n − 1)/2 = 3. Even

though Rothenberg (1971)’s order condition is satisfied, the model may or may not

be overidentified. To use our theory to determine the global identifiability of this

model, we fill the matrices Mj ( f (A0, A+)) for j = 1, 2, 3 according to (16) and (17),

and these matrices are




0 a0,12 a0,13

0 a0,22 a0,23

0 a1,12 a1,13

0 a1,22 a1,23

0 0 0
0 0 0
1 0 0




,




a0,31 0 0
a1,31 0 a1,33

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0




, and




a0,31 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




. (18)

It is clear from (18) that even with the restriction a0,33 = 0, Mj ( f (A0, A+)) has

rank 3 for some values of a’s for j = 1, 2, 3. Hence, even if a0,33 = 0, the model is

globally identified almost everywhere according to Theorems 2 and 4.
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V.3. A monetary SVAR. To identify the systematic monetary policy behavior, Sims

(1986), Gordon and Leeper (1994), Bernanke and Mihov (1998), Leeper and Zha

(2003), and Sims and Zha (2006b), among others, propose identifying restrictions

along the same line of Hamilton’s simultaneous-equation model discussed in Sec-

tion V.2. This approach focuses directly on an interpretation of the structural equa-

tions themselves. In particular, they separate the monetary policy equation from

the money demand equation and other non-policy equations. The restrictions re-

quire non-triangular relationships between financial variables such as the interest

rate and money. The following A0 gives a particular example of restrictions on the

contemporaneous coefficients only:11

A0 =

log Y

log P

R

log M

log Pc




PS PS MP MD Inf

a11 a12 0 a14 a15

0 a22 0 a24 a25

0 0 a33 a34 a35

0 0 a43 a44 a45

0 0 0 0 a55




, (19)

where the transformation function for this case is

f (A0, A+) = A0.

The five variables in the model are: log GDP (log Y), log GDP deflator (log P), the

nominal short-term interest rate (R), log M3 (log M), and log commodity prices (log

Pc). The monetary policy (MP) column in (19) represents a central bank’s contem-

poraneous behavior, the information (Inf) column describes the commodity (infor-

mation) market, the MD column corresponds to the money demand equation, and

the block consisting of the first two columns represents the production sector (PS),

whose variables are arbitrarily ordered to be upper triangular. For this model, we

have k = n = 5. To apply Theorem 2, we need to write down the restrictions Qj for

11See Zha (1999) for restrictions on the lagged structure as well.
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j = 1, . . . , 5. These matrices are

Q1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




, Q2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




, Q3 =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




,

Q4 =




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, and Q5 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.

It follows from the Qj’s for j = 1, . . . , 5 that q1 = 4, q2 = 3, q3 = 3, q4 = 1, and q5 = 0

and the total number of restrictions (∑5
j=1 qj) is 11, greater than n(n − 1)/2 = 10.

Therefore, by Rothenberg (1971)’s order condition, the model may be overidenti-

fied. Since the order condition is only necessary, we apply the sufficient condition

of Theorem 2 by filling the matrices Mj ( f (A0, A+)) for j = 1, · · · , 5 as




0 a22 0 a24 a25

0 0 a33 a34 a35

0 0 a43 a44 a45

0 0 0 0 a55

0 0 0 0 0
1 0 0 0 0




,




0 0 a33 a34 a35

0 0 a43 a44 a45

0 0 0 0 a55

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0




,




a11 a12 0 a14 a15

0 a22 0 a24 a25

0 0 0 0 a55

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




,




0 0 0 0 a55

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




, and




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Clearly there exist values of a’s such that matrix Mj ( f (A0, A+)) has the rank n = 5

for j = 1, . . . , 5. According to Theorems 2 and 4, the model is globally identified

almost everywhere in the structural parameter space where the identifying restric-

tions are satisfied.
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V.4. Open-economy SVARs. Cushman and Zha (1997), Kim (1999), and Kim and

Roubini (2000) extend the non-triangular identification to open economies such as

Canada and European countries. Kim (1999) and Kim and Roubini (2000) only con-

sider contemporaneous restrictions, while Cushman and Zha (1997) impose restric-

tions on the lag structure in addition to the restrictions on the contemporaneous

matrix.12 In this subsection, we only analyze the model of Kim (1999). For the illus-

trative purpose, this model is relatively small and the restrictions are imposed on the

contemporaneous matrix A0 only. For the SVARs of Cushman and Zha (1997) and

Kim and Roubini (2000), one can use the similar operational approach employed in

Section V.3 to show that those models are indeed globally identified. We leave the

verification to the reader.

Kim (1999) uses monthly data on five variables: the call money rate (R), the mone-

tary aggregate (M), the consumer price index (P), the industrial production (y), and

the world export commodity price index (Pc). Except for R, all the other variables

are expressed in log. The restrictions for Kim (1999)’s identification can be expressed

as

A0 =

R

M

P

y

Pc




PS PS MP MD Inf

0 0 a13 a14 a15

0 0 a23 a24 a25

0 a32 0 a34 a35

a41 a42 0 a44 a45

0 0 a53 0 a55




. (20)

The label ‘PS’ on the top stands for the production sector, ‘MP’ for the monetary

policy equation, ‘MD’ for the money demand, and ’Inf’ for the information equation.

For the production sector, the variables P and y are arbitrarily ordered in a triangular

form, and other financial variables such as R, M, and Pc do not enter this sector. For

the monetary policy equation, the monetary authority does not react to y and P

because output and the general price level cannot be observed within the month.

The money demand function involves only the four variables R, M, P, and y. The

last column labeled as ‘Inf’ suggests that the commodity prices respond to all the

variables in the complete information market.

12As discussed in Section V.2, restrictions on the lag structure may be crucial in helping achieve

identification of an SVAR.
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The transformation function for this model is

f (A0, A+) = A0.

From (20), one can see that n = 5 and qj = n− j for j = 1, . . . , 5. Then, it follows

from Theorem 8 that Kim (1999)’s SVAR is exactly identified.

Now suppose that we allow the variable Pc to be treated as part of the production

sector so that they enter the columns labelled as ‘PS.’ With this change, the number

of restrictions are now less than n(n − 1)/2 = 10 and Rothenberg (1971)’s order

condition is violated. Thus, the model is not identified. To meet the order condition,

at least two additional restrictions are needed. Following Cushman and Zha (1997),

we assume that the contemporaneous money demand equation takes the functional

form

M− P = y− a14/a24R,

which is consistent with many DSGE models (see, for example, Blanchard and Fis-

cher (1989)). This alternative identification can be expressed as

A0 =

R

M

P

y

Pc




MD PS PS MP Inf

a14 0 0 a13 a15

a24 0 0 a23 a25

−a24 0 a32 0 a35

−a24 a41 a42 0 a45

0 a51 a52 a53 a55




, (21)

with the same transformation function as the previous identification.

Note that we have reordered the equations so that the convention given by (4)

is satisfied. Since the total number of restrictions for this alternative identification

is now equal to n(n − 1)/2 = 10, Rothenberg (1971)’s order condition for exact

identification is met. The question is whether the model, in fact, exactly identified

under this identification. Without utilizing our theory, it is impossible to answer the

question directly from (21). To apply Theorem 8, we express the restrictions Qj for
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j = 1, . . . , 5 implied by (21) as

Q1 =




0 1 1 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




, Q2 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




, Q3 =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

Q4 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, and Q5 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.

It is straightforward to see that q1 = 3, q2 = 3, q3 = 2, q4 = 2, and q5 = 0. As a result,

the rank condition of Theorem 8 is violated and therefore the model described by

(21) is not exactly identified. This example is informative because the alternative

identification is as economically plausible as Kim (1999)’s original identification,

and yet without our theory one may conclude that the model is exactly identified

while it is not.

V.5. Restrictions on impulse responses. It has become increasingly popular that

identifying restrictions are imposed directly on impulse responses (Sims, 2005). One

of the most important advantages of our theory is that it allows one to determine

whether nonlinear restrictions on the structural parameters resulting from restric-

tions on impulse responses identify the model globally. In Section II.4 we show

how we can write transformation functions f (·) to handle restrictions on impulse

responses at various horizons. In this section we show how to apply our theory to

a particular SVAR with short-run and long-run restrictions on impulse responses as

introduced by Galí (1992). This kind of restriction has been widely used to obtain

stylized facts for DSGE modeling.

Following Peersman and Smets (2003), we consider a four-variable SVAR with

three contemporaneous and three long-run restrictions on impulse responses. The

four endogenous variables are quarterly output growth (∆ log Y), quarterly inflation

(∆P), the nominal short-term interest rate (R), and a quarterly change of the nominal

exchange rate euro/dollar (∆ log Ex ). The short-run restrictions are:

• Monetary policy shocks have no contemporaneous effect on output.

• Exchange rate shocks have no contemporaneous effect on output.

• Exchange rate shocks have no contemporaneous effect on the interest rate.
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TABLE 1. Restrictions implying that the model is identified

f (A0, A+) =

[
L0

L∞

]
=

Ex P D S

∆ log Y

∆ log P

R

∆ log Ex

∆ log Y

∆ log P

R

∆ log Ex




0 0 × ×
× × × ×
0 × × ×
× × × ×
0 0 0 ×
× × × ×
× × × ×
× × × ×




The long-run restrictions on impulse responses are:

• Aggregate demand shocks have no long-run effect on output.

• Monetary policy shocks have no long-run effect on output.

• Exchange rate shocks have no long-run effect on output.

The transformation function of the original parameters and the identifying re-

strictions on the transformed parameters are represented in Table 1. On the top row

of the table, ‘Ex’ stands for a shock to the exchange rate market, ‘P’ for a monetary

policy shock, ’D’ for a demand shock„ and ’S’ for a supply shock. The symbol ‘×’

means that no restriction is imposed, and ‘0’ means an exclusion restriction.

From this table one can see that n = 4, k = 2n = 8, q1 = 3, q2 = 2, q3 = 1,

and q4 = 0. The total number of restrictions (∑4
j=1 qj) is equal to n(n − 1)/2 = 6

and Rothenberg (1971)’s order condition for exact identification holds. Because qj =

n− j for j = 1, . . . , 4, this model is exactly identified according to Theorem 8.

To emphasize the importance of Theorem 8, we consider the assumption of sup-

ply shocks having no contemporaneous effect on inflation because of the price stick-

iness, in place of the original assumption that exchange rate shocks have no contem-

poraneous effect on output. This alternative identification implies the set of restric-

tions on f (A0, A+) as represented in Table 2.

For this alternative set of restrictions, the total number of restrictions is still equal

to 6 and therefore Rothenberg (1971)’s order condition for exact identification holds.

But it is straightforward to show that Theorem 8 is not satisfied, because q1 = 2

(the number of restrictions in the ‘Ex’ column) is the same as q2 = 2 (the number



IDENTIFICATION AND ALGORITHMS 35

TABLE 2. Restrictions implying that the model is not identified

f (A0, A+) =

[
L0

L∞

]
=

Ex P D S

∆ log Y

∆ log P

R

∆ log Ex

∆ log Y

∆ log P

R

∆ log Ex




× 0 × ×
× × × 0

0 × × ×
× × × ×
0 0 0 ×
× × × ×
× × × ×
× × × ×




of restrictions in the ‘P’ column) and q3 = 1 (the number of restrictions in the ‘D’

column) is the same as q4 = 1 (the number of restrictions in the ‘S’ column). Thus,

this is another example where, if we had naively applied the order condition, we

would have wrongly concluded that the model is exactly identified.

VI. ALGORITHMS FOR ESTIMATION AND SMALL-SAMPLE INFERENCE

In Sections II and III we have developed a general theory to determine whether a

wide class of restrictions identify SVARs globally. In Section V we have used our the-

ory to establish formally that many widely-used SVARs are globally identified. We

have shown that slight modifications in restrictions may render the model uniden-

tified. We believe that the development of this theory is important because global

identification of an SVAR must be a first object to establish in the SVAR analysis.

After global identification has been determined, the next step is to perform small-

sample estimation and inference. For the maximum likelihood estimate or the poste-

rior estimate when a prior is used, the existing estimation method for SVARs with re-

strictions on impulse responses is inefficient. This inefficiency can become more seri-

ous for small-sample inference, because Bayesian MCMC methods or classical boot-

strap procedures often require expensive computation of randomly sampling struc-

tural parameters (Kilian, 1998; Geweke, 1999; Inoue and Kilian, 2002; Geweke, 2005;

Pesavento and Rossi, 2006). These existing methods become extremely expensive

when time-varying SVARs are studied (Uhlig, 1997; Canova and Gambetti, 2004;

Cogley and Sargent, 2005; Primiceri, 2005; Sims and Zha, 2006b; Gambetti, Pappa,
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and Canova, forthcoming). Take as an example an exactly identified model with

drifting parameters and with restrictions directly imposed on impulse responses.

The conventional method of Galí (1992) involves solving a system of nonlinear equa-

tions for every draw of the parameters and at each time t for the time-varying SVAR.

For a twelve-lag SVAR of more than three variables, it quickly becomes computa-

tionally infeasible to have as many as millions of draws that are often required to

achieve accurate small-sample inferences.

To address this practical problem, in this section we first build on Theorem 6

and develop an algorithm to achieve computational efficiency for exactly identi-

fied models. Second, we show that for a triangular system an even faster algorithm

is feasible. Third, we derive a computationally efficient algorithm designed for sign

restrictions. This algorithm improves considerably on the existing methods, and it

is important because sign restrictions have been widely used in the recent literature.

Finally, we describe a class of priors that allow us to use these algorithms in the

Bayesian framework.

VI.1. Algorithms for exactly identified models. Assume that the model is exactly

identified. Let f (A0, A+) be the associated transformation function and let Q1, Q2, · · · , Qn

represent the identifying restrictions. Theorem 6 tells us that for any value of (A0, A+),

either an estimate or a particular draw, there is a unique orthogonal matrix P such

that (A0P, A+P) satisfies the identifying restrictions. The matrix P is sometimes

called the rotation matrix. The core of our argument is that, instead of solving a

complicated system of nonlinear equations as in Galí (1992), we can find the ro-

tation matrix P in a very efficient manner. The following algorithm gives a step-

by-step description of how to find this rotation matrix efficiently. Recall that we

follow the convention that the transformation function f (·) has been so chosen that

rank
(
Qj

)
= qj = n− j for j = 1, · · · , n as in Theorem 8.

Algorithm 1. Let an SVAR be exactly identified and (A0, A+) be any value of the

unrestricted structural parameters.

(Step 1) Set j = 1.
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(Step 2) Form the matrix

Q̃j =




Qj f (A0, A+)

p′1
...

p′j−1




.

If j = 1, then Q̃j = Qj f (A0, A+).

(Step 3) Let pj be any unit-length vector such that Q̃j pj = 0. Such a vector exists

because rank
(
Qj

)
= n− j and hence rank

(
Q̃j

)
< n. Use the LU decomposition of

Q̃j to find this unit-length vector pj.

(Step 4) If j = n, stop; otherwise, set j = j + 1 and go to Step 2.

The above algorithm produces the orthogonal matrix

P =
[

p1 . . . pn

]

that is guaranteed by Theorem 6. As shown in Section II.3, the restrictions repre-

sented by f (A0, A+) and Q1, Q2, · · · , Qn are very general. This generality makes

our algorithm useful for a large set of identifying restrictions.

How does the algorithm work for small-sample estimation and inference? Sup-

pose that one wishes to find the ML estimate (or the estimate at the posterior peak)

of the restricted model. Assume one is able to get the ML estimate (or the estimate

at the posterior peak) for the unrestricted structural parameters or the reduced-form

parameters.13 Algorithm 1 provides us an orthogonal matrix P that rotates the un-

restricted estimate to the estimate that satisfies the identifying restrictions. If the

original estimate is for the reduced-form parameters, one can use Algorithm 1 to

rotate the Cholesky decomposition of Σ to get the estimate of structural parameters

that satisfy the restrictions.

Suppose now that one wishes to perform small-sample inference by using the

bootstrap procedure or the Bayesian MCMC method to construct confidence inter-

vals of structural parameters. Denote a draw of the unrestricted structural parame-

ters by (A∗0 , A∗+). For such a draw, one uses Algorithm 1 to find the rotation matrix

P such that Qj f (A∗0P, A∗+P) ej = 0 for all 1 ≤ j ≤ n. If one works on a draw of

13Such an estimate of the unrestricted structural parameters may not be unique, but it gives the

same likelihood or posterior value as other estimates at the peak of the likelihood or the posterior

density.
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TABLE 3. Short-run and long-run restrictions

f (A0, A+) =

[
L0

L

]
=

P D S

∆ log Y

R

log P

∆ log Y

R

log P




0 × ×
× × ×
× × ×
0 0 ×
× × ×
× × ×




the reduced-form parameters, one can obtain (A∗0 , A∗+) from the Cholesky decom-

position of the reduced-form covariance matrix. Given (A∗0 , A∗+), one can then use

Algorithm 1 to find the rotation matrix P such that Qj f (A∗0P, A∗+P) ej = 0 for all

1 ≤ j ≤ n.

VI.2. An example. To illustrate how Theorem 6 and Algorithm 1 work in practice,

we present a simple example of finding the rotation matrix P using Algorithm 1.

To maximize clarity of the exposition, we consider a simple three-variable standard

SVAR with one lag so that A+ = A1, the analysis of which can be easily extended to

more variables and more lags. The three variables are output growth (∆ log Y), the

interest rate (R), and inflation (∆ log P). There are three identifying restrictions: de-

mand shocks have no long-run effect on output, and monetary policy shocks have

neither a short-run nor a long-run effect on output. These restrictions on impulse

responses can be expressed as the restrictions on the columns of the transformed

matrix f (·). Table 3 presents this transformation and the restrictions on the trans-

formed parameters. In the table, the symbol ‘×’ indicates no restrictions, ‘0’ indi-

cates an exclusion restriction, ‘P’ stands for policy shocks, ‘D’ for demand shocks,

and ‘S’ for supply shocks.

The first and foremost step is to determine whether this system is identified. From

Table 3 one can see that n = 3, q1 = 2, q2 = 1, and q3 = 0. It follows from Theorem

8 that this system is exactly identified. Therefore, for almost any value of (A0, A+),

there exists a unique rotation matrix P such that Qj f (A0P, A+P) ej = 0 for all 1 ≤
j ≤ n.
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To show how to find such a rotation matrix using Algorithm 1, we express the

restrictions described by Table 3 by the matrices Qj’s as follows

Q1 =




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0


 , Q2 =




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , and Q3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 .

By deleting the rows of zeros out of the above Qj’s, we have

Q̄1 =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
and Q̄2 =

[
0 0 0 1 0 0

]
.

Since all the rows in Q3 are zeros, there is no Q̄3. Working with Q̄j is operationally

easier than working with Qj, since Q̃j in Algorithm 1 derived from Q̄j will always

be an (n− 1)× n matrix.14

For the purpose of walking through Algorithm 1, suppose that the estimates of

the reduced-form parameters B and Σ are

B =




0.5 −1.25 −1

0.5 0.25 0

0 0 0.5


 and Σ =




1 0.5 1

0.5 4.25 2.5

1 2.5 3


 .

We compute A0 from the Cholesky decomposition of Σ−1 (in Matlab, A0 = chol
(
Σ−1)′),

and A+ = BA0. Since L′0 =
(

A−1
0

)
and L′∞ = (A0 − A+)−1, we have

f (A0, A+) =

[
L0

L∞

]
=




1 0 0

0.5 2 0

1 1 1

1 1 0

−1 1 0

0 0 2




(22)

and

Q̃1 = Q̄1 f (A0, A+) =

[
1 0 0

1 1 0

]
.

14In most applications it is obvious how to form Q̄j, but one can always use the Matlab function

orth() and define

Q̄j = orth
(

Q′
j

)′
.

15
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The first step in Algorithm 1 is to find a unit length vector p1 such that Q̃1 p1 =

0. The most computationally efficient method of finding this vector is to employ

the LU decomposition of Q̃1. However, it is often more convenient to employ the

QR decomposition of Q̃′
1.16 Let Q̃′

1 = QR where Q is orthogonal and R is upper

triangular. If we choose p1 to be the last row of Q, then

Q̃1p1 = R′Q′p1 = R′




0

0

1


 = 0,

since the last column of R′ is zero. Therefore p1 is equal to

p1 =




0

0

1


 .

To obtain p2, we form

Q̃2 =

[
Q̄2 f (A0, A+)

p′1

]
=

[
1 1 0

0 0 1

]
.

As before, take p2 to be the last row of the orthogonal component of the QR decom-

position of Q̃′
2 to get

p2 =




0.7071

−0.7071

0


 .

To obtain p3, we form

Q̃3 =

[
p
′
1

p
′
2

]
=

[
0 0 1

0.7071 −0.7071 0

]
.

16In Matlab, the function qr() applied to an n× (n− 1) matrix returns an n×n orthogonal matrix Q

and an n× (n− 1) upper triangular matrix R. In other software packages, however, the “orthogonal”

matrix Q may be n× n− 1 and the triangular matrix R may be n− 1× n− 1. If those packages are

used, one needs to pad the matrix Q̃j with a row of zeros before proceeding further. In either case,

the last row of R will be zero.
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Again, letting p3 be the last row of the orthogonal matrix of the QR decomposition

of Q̃′
3, we get

p3 =



−0.7071

−0.7071

0


 .

Combining these results, one obtains the orthogonal matrix

P =
[

p1 p2 p3

]
=




0 0.7071 −0.7071

0 −0.7071 −0.7071

1 0 0


 .

It is straightforward to verify that

Qj f (A0P, A+P) ej = 0

for all 1 ≤ j ≤ 3 or

Q̄j f (A0P, A+P) ej = 0

for all 1 ≤ j ≤ 2.

VI.3. Algorithms for triangular systems. While Algorithm 1 gives us an efficient

way to find the rotation matrix P for exactly identified models, in this section we

present a much faster algorithm for triangular systems that are defined as follows.

Definition 7. The restrictions in the form of (3) and (4) are triangular if and only

if there exists an invertible matrix P1 such that the matrix P1 f (A0, A+) P0 is lower

triangular, where

P0 =




0 · · · 1
...

...

1 · · · 0


 .

According to Definition 7, identifying restrictions are triangular if they can be

transformed into a lower triangular system. For a triangular system, Algorithm 1

can be so improved that the orthogonal matrix given by Theorem 6 can be found

using only a single (instead of successive) QR decomposition as described in the

following theorem.

Theorem 9. Suppose the restrictions are triangular as defined in Definition 7. Let

P1 be the matrix that makes the restrictions triangular, (A0, A+) be any structural
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parameters, (P1 f (A0, A+))′ = QR using the QR decomposition (where Q is an or-

thogonal matrix and R is upper triangular), and P = QP0. Then

Qj f (A0P, A+P) ej = 0 for1 ≤ j ≤ n.

Proof. Since P1 f (A0, A+) = R′Q′,

R′ = P1 f (A0, A+) QP0P0

= P1 f
(

A0QP′0, A+QP0
)

P0.

Since R′ is lower triangular, (A0QP′0, A+QP′0) satisfies the restrictions by Definition

7. ¤

In the example of Section VI.2, the restrictions implied by Qj or Q̄j are of the exclu-

sion type. This type simply sets particular parameters to zero. Formally, identifying

restrictions in the form of (3) and (4) are of the exclusion type if, for all 1 ≤ j ≤ n,

each row of Qj has zeros and ones, with a single one at most. It follows from Def-

inition 7 that if the restrictions are of the exclusion type, P1 becomes a permutation

matrix and thus the system can be permuted into a lower triangular system. To show

how such a permutation task can be accomplished, we first postmultiply the matrix

f (A0, A+) by P0 to reverse the order of its columns and then use P1 to permute the

rows of f (A0, A+) P0 into a triangular form by swapping the first and fourth rows.

These operations imply

P1 =




0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

Now that we have proven that the restrictions used in Section VI.2 are triangular by

Definition 7, we can use Theorem 9 to find the rotation matrix P. As an illustration,

we use the same values of the reduced-form parameters B and Σ as in Section VI.2.
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The numerical value of the matrix f (A0, A+) is given by (22). The QR decomposi-

tion of (P1 f (A0, A+))′ gives

Q =



−0.7071 −0.70710 0

−0.7071 0.7071 0

0 0 1


 .

The required rotation matrix is equal to

P = QP0 =




0 −0.70710 −0.7071

0 0.7071 −0.7071

1 0 0


 .

The reader can easily verify that f (A0P, A+P) satisfies the identifying restrictions,

i.e., Qj f (A0P, A+P) ej = 0 for 1 ≤ j ≤ n.

VI.4. Sign restrictions. The identifying restrictions described in Section II.3 and the

algorithms developed in Sections VI.1 and VI.3 are based on linear restrictions on

transformed structural parameters. One objective in employing this class of restric-

tions is to identify structural shocks. According to the conventional wisdom (and

many DSGE models), for example, a contractionary monetary policy shock should

raise the interest rate and lower output and prices. Thus, a successful identification

should produce impulse responses that conform to this conventional wisdom. Some

restrictions of the identification type described in Section II.3, such as the triangu-

lar identification, may not generate impulse responses that have the desired signs.

In this situation, Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) pro-

pose an alternative approach.17 Their basic idea is to use sign restrictions directly

imposed on impulse responses such that, for example, the interest rate rises while

money, output, and prices fall in response to a contractionary monetary shock.

The algorithms established in Sections VI.1 and VI.3 cannot be applied to small-

sample estimation and inference of an SVAR with sign restrictions. The reason is

that an SVAR with sign restrictions on impulse responses is not exactly identified.

According to Theorem 6, a necessary and sufficient condition for an SVAR to be

exactly identified is that for any value of (A0, A+), there exists a unique rotation

matrix P such that (A0P, A+P) satisfies the restrictions. For sign restrictions, how-

ever, there exist a number of such P’s (Fry and Pagan, 2007).

17The algorithms of Faust, Canova and De Nicoló, and Uhlig are briefly described in Appendix E.
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Canova and DeNicoló (2002) propose an algorithm that is designed to find one

of these P’s. Suppose that such a P exists (i.e., the impulse responses generated

through the rotation matrix P satisfy the sign restrictions), an important question

is whether their algorithm always finds it (Fry and Pagan, 2007). The answer is

positive, as formally established by the following theorem.

Theorem 10. Let P be an (n× n) orthogonal matrix. There exists θi,j for 1 ≤ i < j ≤ n

such that (1) 0 ≤ θi,j < π for i < j < n, (2) 0 ≤ θi,n < 2π, and (3)18

P =
n−1

∏
i=1

n

∏
j=i+1

Qi,j
(
θi,j

)
,

or

P = S
n−1

∏
i=1

n

∏
j=i+1

Qi,j
(
θi,j

)
,

where

S =




1 · · · 0 0
... . . . ...

...

0 · · · 1 0

0 · · · 0 −1




,

and

Qi,j
(
θi,j

)
=




col i

↓
col j

↓
1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

row i → 0 · · · cos
(
θi,j

) · · · − sin
(
θi,j

) · · · 0
...

... . . . ...
...

row j → 0 · · · sin
(
θi,j

) · · · cos
(
θi,j

) · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1




.

Proof. See Appendix E.2 for the proof. ¤

The algorithm of Canova and DeNicoló (2002), as discussed in Appendix E.2,

becomes computationally infeasible when an SVAR system is moderately large (e.g.,

18In Canova and De Nicoló (2002), the notation Qi,j (θ) is used where θ is implicitly assumed to

vary with different i and j.
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n > 4). To solve this inefficiency problem, we develop a new algorithm, based on

the following theorem, for small-sample estimation and inference of an SVAR with

sign restrictions.

Theorem 11. Let X̃ be an n × n random matrix with each element having an inde-

pendent standard normal distribution. Let X̃ = Q̃R̃ be the QR decomposition of X̃

with the diagonal of R̃ normalized to be positive. Then Q̃ has the uniform (or Haar)

distribution.

Proof. The proof follows directly from Stewart (1980).19 ¤

Theorem 11 gives us a convenient way of implementing a random selection of

orthogonal matrices to obtain impulse responses that satisfy the sign restrictions.

The following algorithm describes this implementation.

Algorithm 2. Let (A0, A+) be any value of the unrestricted structural parameters.

(Step 1) Draw an independent standard normal n× n matrix X̃ and let X̃ = Q̃R̃

be the QR decomposition of X̃ with the diagonal of R̃ normalized to be positive.

(Step 2) Let P = Q̃ and generate impulse responses from A0P and B = A+A−1
0 .

(Step 3) If these impulse responses do not satisfy the sign restrictions, return to

Step 1.

If (A0, A+) is the estimate of unrestricted structural parameters, (A0P, A+P) ob-

tained via Algorithm 2 is the estimate of structural parameters satisfying the sign

restrictions. If (A0, A+) is a draw of unrestricted parameters, (A0P, A+P) obtained

via Algorithm 2 is a draw of structural parameters satisfying the sign restrictions.20

If B and Σ are a draw of the reduced-form parameters, we use B and the Choleski de-

composition of Σ to obtain (A0, A+) and then use Algorithm 2 to obtain (A0P, A+P)

that satisfies the sign restrictions.

Our algorithm should be viewed as a generalized version of Uhlig (2005)’s algo-

rithm. If several structural shocks must be identified, Uhlig’s algorithm searches

19Stewart (1980) has even more efficient algorithms for generating uniform random orthogonal

matrices, but they are less straightforward and more difficult to implement.
20In theory the algorithm is not guaranteed to terminate. In practice, we set a maximum number

of iterations to be 100,000 for Steps (2)-(4) to be repeated. If the maximum is reached, the algorithm

should move to Step (1) to draw another orthogonal matrix Q̃. In our MCMC experiments, the

maximum of iterations was never reached for millions of simulations.
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for the orthogonal matrix column by column recursively. During this search, the or-

thogonal matrix may not be found for some draws, either from the bootstrap proce-

dure or from the posterior distribution. Our algorithm, based on the Householder-

transformation methodology, differs from Uhlig (2005)’s algorithm in two aspects:

(1) all the posterior draws are kept in practice, and (2) the orthogonal matrix is sim-

ply a draw from the uniform (or Haar) distribution with only a single operation of

the QR decomposition. These differences make our algorithm more efficient when

several shocks are to be identified. Especially for a time-varying SVAR system with

more than three or four structural shocks to be identified, the efficiency gain can be

as high as the 10-1 ratio when our algorithm is compared with the algorithms of

Uhlig and Canova and De Nicoló (see, for example, Benati and Mumtaz (2006) for

an application of our algorithm in their DSGE model).21

VI.5. A reference prior. Sections VI.1, VI.3, and VI.4 develop new algorithms us-

able to small-sample estimation and inference of a large class of SVARs. If we are to

obtain the ML estimate (or the estimate at the posterior peak) of the restricted model,

the algorithms use the estimate of the unrestricted parameters, denoted by (A0, A+),

to find an orthogonal matrix P such that the transformed parameters (A0P, A+P)

satisfy the restrictions. The same procedure applies to small-sample inference.

In the Bayesian framework, an additional property is needed: the transformed

parameters (A0P, A+P) must have the same prior distribution as the original pa-

rameters (A0, A+). This property ensures that our algorithms are valid for Bayesian

estimation and inference as well as for computation of the marginal data density for

model comparison.22

Do the existing priors used in the Bayesian SVAR literature have this property? In

this subsection, we show that the reference prior of Sims and Zha (1998) preserves

the property that (A0, A+) and (A0P, A+P), where P is an orthogonal matrix, share

the same prior distribution. The Sims and Zha (1998) prior is general and encom-

passes the popular Minnesota prior. The prior density for the unrestricted parame-

ters takes the following form

a0 = vec(A0) ∼ N(0, In ⊗ H0), (23)

21Since the particular application studied by Uhlig (2005) concerns only a monetary policy shock

(not any other shocks), the efficiency gain from our algorithm is negligible.
22We thank a referee for bringing up this important point.
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and

a+ | a0 = vec(A+) | a0 ∼ N (vec(S̄A0), In ⊗ H+) , (24)

where H0 and H+ are symmetric positive definite matrices and S̄ is typically set as

 I

n×n

0
m×n




to represent a random-walk component of the prior.

An essential part of the algorithms developed in Sections VI.1, VI.3, and VI.4 is

about finding a rotation P. An orthogonal rotation of A0 and A+ leads to Ã0 = A0P

and Ã+ = A+P, where Ã0 and Ã+ are restricted structural parameters satisfying

the identifying restrictions. The key question is whether the Sims and Zha prior is

invariant to such a rotation. The following two identities prove that this invariance

result holds.

ã0 = vec(A0P) = (P′ ⊗ In)a0 ∼ N(0, In ⊗ H0),

and

ã+ | ã0 = vec(A+P) | ã0

= (P′ ⊗ Im)a+ | ã0

∼ N
(
(P′ ⊗ Im)vec(S̄A0), In ⊗ H+

)
= N (vec(S̄A0), In ⊗ H+) .

In other words, (A0, A+) and (A0P, A+P) share the same prior density as long as P

is an orthogonal matrix. Since an orthogonal rotation of (A0, A+) has no effect on

the likelihood function, the posterior density for (A0P, A+P) is the same as that of

(A0, A+).

VII. CONCLUSION

SVARs are widely used for policy analysis and to provide stylized facts for eco-

nomic theory. Before one proceeds to perform an empirical analysis with a particu-

lar SVAR, however, it is essential that the model be checked to ascertain its identifi-

ability. Otherwise, the empirical results would be misleading.

In this paper we have made contributions towards closing important theoretical

gaps in the SVAR literature by providing a general theory of global identification

and practical algorithms for small-sample estimation and inference. In particular,
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we have established general rank conditions for global identification of SVAR mod-

els. These conditions can be checked as a simple matrix-filling and rank-checking

exercise.

The usual rank conditions for (local) identification in the literature involve com-

puting the rank of certain derivatives (Fisher, 1966; Rothenberg, 1971; Hausman and

Taylor, 1983). We are able to obtain much simpler conditions by exploiting the or-

thogonal structure given by Theorem 1 and thus do not have to explicitly compute

any derivatives. Consequently, for exactly identified SVARs, our necessary and suf-

ficient condition for identification involves simply counting restrictions and check-

ing the pattern of these restrictions, an exercise no more complicated than Rothen-

berg (1971)’s order condition.

Our theoretical results apply to a large class of identifying restrictions, including

nonlinear restrictions on the parameters such as widely-used short-run and long-

run restrictions imposed on impulse responses. Our theory is valid for both classi-

cal and Bayesian analysis of SVAR models. Moreover, the efficient algorithms de-

veloped in this paper provide essential tools for researchers to study a variety of

empirical SVARs for comparative and robustness analysis.
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APPENDIX A. DIFFERENTIABLE MANIFOLDS AND SETS OF MEASURE ZERO

We have used differentiable manifolds through out this paper. A trivial example

of a differentiable manifold is any open subset of a Euclidean space, so both PS, the

set of all structural parameters, and U, the set of admissible structural parameters

are differentiable manifolds. More interesting examples are PR, Û, and O (n), the

set of all reduced-form parameters, the set of admissible reduced-form parameters,

and the set of all n× n orthogonal matrices, respectively. In this appendix, we high-

light a few properties of differentiable manifolds and develop some results about

measure zero subsets of differentiable manifolds. See Spivak (1965, Chapter 5) for a

further discussion of differentiable manifolds. We will henceforth refer to differen-

tiable manifolds as simply manifolds. A k dimensional manifold in Rn is defined as

follows.

Definition 8. A subset M of Rn is a k-dimensional manifold if for every x ∈ M there

exists an open set V ⊂ Rn containing x, an open set W ⊂ Rk ×Rn−k, and a contin-

uously differentiable function h : V → W with continuously differentiable inverse

such that

h (V ∩ M) = W ∩
(

Rk × {0}
)

= {(y1, · · · , yn) ∈ W | yk+1 = · · · = yn = 0} .

The pair (V, h) defines a n dimensional coordinate system about x. If π : Rn → Rk

is defined by π (x1, · · · , xn) = (x1, · · · , xk, ), then the n-dimensional coordinate sys-

tem restricts to a k-dimensional coordinate system (V ∩ M, π ◦ h). Thus a manifold

is locally a Euclidean space. We exploit this local Euclidean structure to character-

izer sets of measure zero on manifolds.

While measure zero sets are often studied in the context of Lebesgue measure, for

Euclidean spaces we do not need the full power of this machinery. We define sets of

measure zero as follows.

Definition 9. A set A ⊂ Rk is of measure zero if and only if for every ε > 0 there exist

countably many closed k-dimensional rectangles Ri of volume vi such that A ⊂
⋃

i Ri and ∑i vi < ε.
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This definition of measure zero is equivalent to definition arising from Lebesgue

measure. We can use the local coordinate systems to extend the notion of sets of

measure zero to manifolds.

Definition 10. Let A be a subset of the k-dimension manifold M in Rn. The set A is

of measure zero in M if and only if for every coordinate coordinate system (V, h),

the set (π ◦ h) (A ∩V) is of measure zero in Rk.

For this definition to be meaningful, it must be the case that it is independent

of the choice of coordinate system. Suppose that (V1, h1) and (V2, h2) are two co-

ordinate systems about x ∈ M. It must be the case that for any A ⊂ M the set

(π ◦ h1) (A ∩V1 ∩V2) is of measure zero if and only if (π ◦ h2) (A ∩V1 ∩V2) is of

measure zero. The following lemma guarantees this.

Lemma 1. Let W and be an open subset of Rk, let h : W → Rk be a continuously

differentiable function and let A be a subset of h (W). If h−1 (A) is of measure zero,

then A is of measure zero.

Proof. Let B be the set x ∈ h−1 (A) such that det h′ 6= 0 and let C be the set of all

x ∈ h−1 (A) such that det h′ = 0. By Sard’s theorem,23 the measure of h (C) is zero.

So it suffices to show that if B is of measure zero, g (B) is of measure zero. Since

det h′ 6= 0 on B, by the inverse function theorem,24 for every x ∈ B there exists an

open set V ⊂ W containing x such that h restricted to V is invertible. Since h is

continuously differentiable, we can choose the open set V so that the absolute value

of the derivative of h on V is bounded. Choose c so that |det h′| < c on V. Because Rk

has a countable basis, open balls with rational center and rational radius, there exist

countably many such V that cover B. So, to complete the proof, it suffices to show

that if B ∩ V is of measure zero, then h (B ∩V) will be of measure zero. If B ∩ V is

of measure zero, then given any ε > 0 there exists a set D =
⋃

i Ri containing B ∩V

such that each Ri is a closed rectangle in V of volume vi and ∑i vi < ε. Let χD and

χh(D) be the indicator functions on D and h (D), respectively. We can make a change

23See Spivak (1965, page 72) for a statement and proof of Sard’s theorem.
24See Spivak (1965, page 35) for a statement and proof of the inverse function theorem.
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of variables25 to integrate the indicator function χh(D), which gives
∫

h(V)
χh(D) =

∫

V

(
χh(D) ◦ h

)
|det h′|

=
∫

V
χD|det h′| < cε.

Because h (B ∩V) ⊂ h (D) and D can be chosen to make
∫

h(V) χh(D) arbitrarily

small, it must be the case that h (B ∩V) is of measure zero. ¤

Define ι : Rk → Rn by ι (x1, · · · , xk) = (x1, · · · , xk, 0, · · · , 0). If (U1, h1) and

(U2, h2) are two coordinate systems about x ∈ M and A ⊂ M, then
(

π ◦ h2 ◦ h−1
1 ◦ ι

)
(π ◦ h1) (A ∩U1 ∩U2) = (π ◦ h2) (A ∩U1 ∩U2)

and (
π ◦ h1 ◦ h−1

2 ◦ ι
)

(π ◦ h2) (A ∩U1 ∩U2) = (π ◦ h1) (A ∩U1 ∩U2) .

Since both π ◦ h2 ◦ h−1
1 ◦ ι and π ◦ h1 ◦ h−1

2 ◦ ι are continuously differentiable, it fol-

lows from Lemma 1 that (π ◦ h1) (A ∩U1 ∩U2) will be of measure zero if and only

if (π ◦ h2) (A ∩U1 ∩U2) is of measure zero. Thus our definition of a measure zero

set in a manifold is independent of the choice of coordinate systems.

We can easily extend Lemma 1 to manifolds, but first we need to define what we

mean by a differentiable map between manifolds.

Definition 11. Let M1 be a k1-dimensional manifold and let M2 be a k2-dimensional

manifold. A function g : M1 → M2 is continuously differentiable at x if and only if

for any coordinate systems (V1, h1) about x and (V2, h2) about g (x), the composition

pi ◦ h2 ◦ f ◦ h−1
1 ◦ ι is continuously differentiable.

Lemma 2. Let M1 and M2 be k-dimensional manifolds, let g : M1 → M2 be a con-

tinuously differentiable function, and let A be a subset of h (M1). If h−1 (A) is of

measure zero, then A is of measure zero.

Proof. Given any x ∈ M1 and coordinate systems (V1, h1) about x and (V2, h2) about

g (x), the result follows by applying Lemma 1 to the function π ◦ h2 ◦ h−1
1 ◦ ι. ¤

This lemma was implicitly used in the proof of Theorem 6, and will be explicitly

invoked in the proofs of Theorems 7 and 8. Next we analyze the set R in light of the

results of this appendix.

25See Spivak (1965, page 67) for a discussion of integration by substitution in higher dimensions.
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While R will not, in general, be a manifold, the set of un-normalized restricted

structural parameters will be. We denote this set by R and

R =
{
(A0, A+) ∈ U | Qj f (A0, A+) ej = 0 for 1 ≤ j ≤ n

}
. (A1)

The set R will be equal to R∩ N. Related to R is the set R̃ defined by

R̃ =
{

X ∈ f (U) | QjXej = 0 for 1 ≤ j ≤ n
}

. (A2)

The set R̃ is a open subset of a linear subspace of the set of k× n matices and f (R) =

R̃. The dimension of R̃ is nk − ∑j qj. The implicit function theorem26 implies that

for every u ∈ U there exist open sets V1 ⊂ f (U) containing f (u), V2 ⊂ R(m+n−k)n,

and V3 ⊂ U containing u, and a continuously differentiable function h : V1 × V2 →
V3 with continuously differentiable inverse such that f (h (v1, v2)) = v1 for every

(v1, v2) ∈ V1 ×V2. From this representation, it is easy to see that h−1 maps R∩V3 to(
R̃∩V1

)×V2. While V3 and h−1 do not quite satisfy the requirements of Definition

8, it is the case that there is is some linear transformation g of V1×V2 onto itself such

that V3 and g ◦ h−1 do. First, this implies that R is a (m + n) n− ∑j qj manifold in

R(m+n)n. Second, if Ã ⊂ R̃ and A = f−1 (
Ã

)
, then A∩V3 will be of measure zero in

R if and only if
(

Ã ∩V1
)×V2 is of measure zero in R̃×V2. But

(
Ã ∩V1

)×V2 is of

measure zero in R̃× V2 if and only if Ã ∩ V1 is of measure zero in R̃. Thus A ⊂ R

will be of measure zero in R if and only if Ã ⊂ R̃ is of measure zero in R̃. We record

this useful result in the following lemma.

Lemma 3. Let Ã ⊂ R̃. The set A = f−1 (
Ã

)
is of measure zero in R if and only if the

set Ã is of measure zero in R̃.

Finally, as has been noted, the set R is equal to R∩ N. When we say, as was done

in Theorem 4, that a subset A of R is of measure zero in R, we take this to mean that

A is of measure zero in the manifold R.

APPENDIX B. PROOF OF THEOREM 4

Before proceeding with the proof of Theorem 4, we prove the following lemma.

Lemma 4. For 1 ≤ j ≤ n, let Vj be a linear subspace of Rm and let V = V1 × · · · ×Vn.

Define S to be the set of all (v1, · · · , vn) ∈ V, whose span is of dimension strictly less

than n. Either S = V or S is a set of measure zero in V.
26See Spivak (1965, page 43) for a statement and proof of this theorem.
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Proof. Let χS be the indicator function of S. To prove that S is of measure zero, it

suffices to prove that χS is measurable and that
∫

V χS = 0. To show the latter, we

divide V1× · · · ×Vn−1 into two sets A and B. We will show that A is of measure zero

and that
∫

Vn
χS (v1, · · · , vn−1, vn) = 0 for every (v1, · · · , vn−1) ∈ B. Using Tonelli’s

Theorem,27 this implies that
∫

V
χS =

∫

V1×···×Vn−1

∫

Vn
χS (v1, · · · , vn−1, vn)

=
∫

A

∫

Vn
χS (v1, · · · , vn−1, vn) +

∫

B

∫

Vn
χS (v1, · · · , vn−1, vn)

= 0

as desired.

First we show that χS is a measurable function, which is equivalent to showing

that S is measurable. We shall show that S is a closed subset of V, and hence mea-

surable. The volume of the parallelepiped spanned by the vectors v1, · · · , vn is zero

if and only (v1, · · · , vn) ∈ S. Since the volume function is continuous and S is the

inverse image of the closed set {0}, it is closed.

We now proceed with the heart of the proof, which proceeds by induction on n.

When n = 1, V = V1 and S = {0}. If the dimension of V is zero, then S = V, and if

the dimension of V is positive, then S is of measure zero in V.

Now assume that the lemma holds for n− 1. Suppose that S 6= V, so there exists

(ṽ1, · · · , ṽn) ∈ V whose span is of dimension n. Define U to be the m − 1 dimen-

sional subspace of Rm that is perpendicular ṽn and let ρ be the projection mapping

onto U. For 1 ≤ j ≤ n− 1, define Wj = ρ
(
Vj

)
and let W = W1 × · · · ×Wn−1. Define

Sn−1 to be the elements of W whose span is of dimension less than n − 1. By the

induction hypothesis, either Sn−1 = W or Sn−1 is of measure zero in W. Since the

span of ρ (ṽ1) , · · · , ρ (ṽn−1) is of dimension n− 1, (ρ (ṽ1) , · · · , ρ (ṽn−1)) /∈ Sn−1 and

Sn−1 6= W. Thus Sn−1 is of measure zero in W. Let A be the set of all (v1, · · · , vn−1) ∈
V1 × · · · ×Vn−1 such that (ρ (v1) , · · · , ρ (vn−1)) ∈ Sn−1. Because Sn−1 is of measure

zero in W, A must be of measure zero in V, as desired. All that remains to be shown

is that
∫

Vn
χS (v1, · · · , vn−1, vn) = 0 for every (v1, · · · , vn−1) ∈ B, where B is the

complement of A in V1 × · · · ×Vn−1.

Fix (v1, · · · , vn−1) ∈ B and let C be the span of v1, · · · , vn−1. Because (v1, · · · , vn−1) ∈
B, the dimension of C is n − 1, and hence χS (v1, · · · , vn−1, vn) 6= 0 if and only if

27See Royden (1968), page 270, for a statement and proof of Tonelli’s Theorem.
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vn ∈ C. Thus
∫

Vn
χS (v1, · · · , vn−1, vn) = 0 if and only if Vn ∩ C is of measure zero in

Vn. Since Vn ∩ C is either all of Vn or a set of measure zero in Vn, it suffices to show

that there exists an element of Vn that is not in C. Again, since (v1, · · · , vn−1) ∈ B,

the vector ṽn is not in C. ¤

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4. Let W be the complement of K in R. In terms of W, Theorem 4

states that either W = R or W is of measure zero in R. Let W̃ = f (W) and R̃ = f (R).

From the definition of K given by (7) and the definition of R given by (5), one can

easily check that f−1 (
W̃

)
= W and f−1 (

R̃
)

= R. So, by Lemma 3, we have that if

W̃ is of measure zero in R̃, then W is of measure zero in R. Thus, if suffices to prove

that either W̃ = R̃ or W̃ is of measure zero in R̃.

Let Ṽ be the set of all k× n matrices X such that QjXej = 0 for 1 ≤ j ≤ n, and let

W̃i be the set of all matrices X ∈ Ṽ such that rank (Mi (X)) < n. Since R̃ ⊂ Ṽ and

W̃ =
⋂n

i=1 W̃i ∩ R̃, it suffices to show that either W̃i = Ṽ or W̃i is of measure zero in

Ṽ. Because of the block structure of Mi (·), if X = [x1, · · · , xn], then X ∈ W̃i if and

only if rank (Qi [xi+1, · · · , xn]) < n− i. The results now follow from Lemma 4 with

Vj defined to be the set of all vectors of the form Qix where Qi+jx = 0. ¤

From the proof of Theorem 4, it easily follows that if

Kj =
{
(A0, A+) ∈ R | rank

(
Mj ( f (A0, A+))

)
= n

}
, (A3)

then either Kj is empty or the complement of Kj in R is of measure zero in R. We

record this in the following lemma that will be used in Appendix C.

Lemma 5. Either Kj is empty or the complement of Kj in R is of measure zero in R.

APPENDIX C. PROOF OF THEOREMS 7 AND 8

We prove Theorem 8 first, and then Theorem 7. We proceed via a sequence of

lemmas.

Lemma 6. If qj = n − j for 1 ≤ j ≤ n, then for every (A0, A+) ∈ U, there exists a

P ∈ O (n) such that (A0, A+) ∈ R.

Proof. Let (A0, A+) ∈ U and let X = f (A0, A+). Because the rank of Q1X is at most

q1 = n− 1, there exists a vector p1 ∈ Rn of length one such that Q1Xp1 = 0. Now
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assume that p1, · · · , pi−1 are orthonormal vectors in Rn such that QjXpj = 0 for

1 ≤ j < i. Define

Q̂i =




QiX

p′1
...

p′i−1




.

Since the rank of Q̂i is at most qi + i− 1 = n− 1, there exists a pi ∈ Rn of length one

such that Q̂i pi = 0. Thus p1, · · · , pi are orthonormal vectors in Rn such that QjXpj =

0 for 1 ≤ j ≤ i. So, we can continue until we have constructed an orthogonal matrix

P =
[

p1 · · · pn

]
such that XP ∈ R̃. From the definition of the normalization

rule N, we know that there is a diagonal matrix D with plus or minus ones along

the diagonal such that XPD ∈ R̃ or (A0PD, A+PD) ∈ R as required. ¤

Lemma 7. If qj = n − j for 1 ≤ j ≤ n, then there exists (A0, A+) ∈ R such that

Mj (A0, A+) is of rank n for 1 ≤ j ≤ n.

Proof. In light of Lemma 5, it suffices to construct a matrix Xi ∈ R̃ such that Mi (Xi)

is of rank n. It follows from Lemma 6 that R̃ is non-empty, so let Y = [y1, · · · , yn]

be any matrix in R̃. Let Y j
i =

[
yi, · · · , yj

]
. The matrix Mi (Y) is of rank n if and

only if the matrix QiYn
i+1 is of rank n− i. Let Vj be the column space of QiY

i+j
i+1. If

the dimension of Vj is j for 1 ≤ j ≤ n − i, then Mi (Y) is of rank n. If this is not

the case, let j be the first index such that the dimension of Vj is less than j. Because

the dimension of Vj−1 is j − 1 and the dimension of the null space of Qi is i, the

dimension of the set of all vectors v ∈ Rn such that Qiv ∈ Vj−1 is i + j− 1. Since the

dimension of the null space of Qi+j is i + j, there is a non-zero vector v in the null

space of Qi+j such that Qiv is not in Vj−1. Because f (U) is an open set and Y ∈ R̃,

there exists ε > 0 such that if we replace yi+j by yi+j + εv, then the resulting matrix

will be an element of R̃ and have the property that the dimension of the column

space of Qi
[
yi+1, · · · , yi+j−1, yi+j + εv

]
will be of dimension j. So, starting with any

Y ∈ R̃, we can sequentially modify Y until we arrive at a matrix Xi ∈ R̃ such that

Mi (Xi) is of rank n. ¤

Given these two lemmas, the following is now easy to show.

Lemma 8. If qj = n− j for 1 ≤ j ≤ n, then the SVAR model is exactly identified.
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Proof. Let G be defined by (9), and let W be the set of all (A0, A+) ∈ R, which

are not globally identified. We must show that G is of measure zero. It follows

from Lemma 5, Theorem 4 and Theorem 2, that W is of measure zero in R. Since

qj = n− j, the dimension of R is (m + n) n− n (n− 1) /2 and so the dimension of

R×O (n) is (m + n) n. Let h : R×O (n) → U be the continuously differentiable

function which maps (A0, A+) × P to (A0P, A+P). It follows from Lemma 6 that

h−1 (G) = W ×O (n). Since W ×O (n) is of measure zero, by Lemma 2 the set G

will be of measure zero. ¤

This finishes one direction in the proof of Theorem 8. To prove the other direction,

the following lemma is key.

Lemma 9. Let i ≤ n ≤ k. If V1, · · · , Vi are subspaces of Rk with the dimension of Vj

equal to dj for 1 ≤ j ≤ i and for all k× n matrices X there exist orthonormal vectors

p1, · · · , pi in Rn such that Xpj ∈ Vj for 1 ≤ j ≤ i, then there exists a j such that

1 ≤ j ≤ i and dj ≥ k− n + i.

Before giving the formal proof of this lemma, we explain the geometry behind the

result. Consider the case i = n = k = 3. Since the implication of the lemma is that

at least one of the subspaces must be all of R3, suppose that each of subspaces Vj is

at most a plane. It is easy to see that there exists a line L in R3 that intersects each

Vj only at the origin. Let K be the plane through the origin that is perpendicular

to L and let Y be the 3 × 3 matrix which projects R3 onto K along L. While Y is

not invertible, there are invertible matrices that are arbitrarily close to Y. If X is an

invertible matrix such that X−1 is close to Y, then the subspace X−1Vj will almost lie

in K. This depends crucially on the fact that L intersects Vj only at the origin. Since

it is not possible to have three orthonormal vectors almost lie in a plane, it cannot

be the case that for all 3× 3 matrices X there exist orthonormal vectors pj such that

pi ∈ X−1Vj. Thus the theorem holds for i = n = k = 3. The formal proof simply

makes rigorous what is geometrically intuitive in this special case.

Proof. The proof will use the following three facts.

(1) For 0 ≤ d ≤ k, there exists a subspace U of Rk of dimension d such that the

dimension of of Vj ∩U is equal to max
{

0, d + dj − k
}

for 1 ≤ j ≤ i.
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(2) Let W be a i− 1 dimensional subspace of Rn. There exists a δ > 0 such that

there cannot be i orthonormal vectors in the set

SW,δ =
{

w + u ∈ Rk | w ∈ W and ‖u‖ < δ
}

.

(3) Let U and V be subspaces of Rn such that U ∩ V = {0} and let W be the

perpendicular complement of U. For every ε > 0, let XW,ε be the linear

transformation that fixes W and maps each u ∈ U to εu. For every δ > 0

there exists a γ > 0 such that for all γ > ε > 0 if X−1
W,εv ∈ V and ‖v‖ = 1,

then v ∈ SW,δ.

Using (1), we see that there exists a subspace U of Rk of dimension n such that

the dimension of Vj ∩U is of dimension d̃j = max
{

0, n + dj − k
}

. Let X be an k× n

matrix whose column space if equal to U. Let

Ṽj =
{

x ∈ Rn | Xx ∈ Vj
}

.

The dimension of Ṽj is d̃j, and if Y is any n× n matrix, then there exist orthonormal

vectors p1, · · · , pi in Rn such that XYpj ∈ Vj, or Ypj ∈ Ṽj for 1 ≤ j ≤ i. If the lemma

were true for n = k, then this would imply that there would exist a j such that d̃j ≥ i.

This would imply that n + dj − k ≥ i or dj ≥ k− n + i. Hence it suffices to prove the

lemma for n = k.

If n = k and dj < i for 1 ≤ j ≤ i, then (1) would imply that there exists a subspace

U of Rn of dimension n − i + 1 such that Vj ∩U = {0} for 1 ≤ j ≤ i. If W is the

subspace of dimension i − 1 that is perpendicular to U, then (3) would imply that

for every δ > 0, there exists an γj > 0 such that for all γj > ε > 0 if X−1
W,εv ∈ Vj and

‖v‖ = 1, then v ∈ SW,δ. But then (2) would contradict the fact that there must exist

orthonormal vectors p1, · · · , pi in Rn such that X−1
W,ε pj ∈ Vj for 1 ≤ j ≤ i. So dj ≥ i

for some j as required by the lemma when n = k.

All that remains to be shown is (1), (2), and (3).

(1) Because dim
(
U + Vj

)
= dim (U) + dim

(
Vj

)− dim
(
Vj ∩U

)
, (1) is equivalent

to showing that there exists a subspace U of dimension d such that

dim
(
U + Vj

)
= min

{
dim (U) + dim

(
Vj

)
, k

}
. (A4)

When U is of dimension 0, (A4) is trivially true. Assume that there exists a subspace

U of dimension d− 1 for which (A4) holds. We construct a subspace Ũ of dimension

d for which (A4) holds. For those j for which dim
(
U + Vj

)
< k, the subspace U + Vj



IDENTIFICATION AND ALGORITHMS 58

is of measure zero in Rk. So, there exists a u /∈ U such that u /∈ U + Vj for all j

such that dim
(
U + Vj

)
< k. Define Ũ to be the subspace spanned by U and u. For

those j for which dim
(
U + Vj

)
< k, we have that dim

(
Ũ + Vj

)
= dim

(
U + Vj

)
+ 1

and for those j for which dim
(
U + Vj

)
= k, we have that dim

(
Ũ + Vj

)
= k. Since

dim
(
Ũ

)
= dim (U) + 1, it is easy to verify that (A4) holds for Ũ.

(2) Choose δ < 1/
(
i
√

n
)
. Suppose there were v1, · · · , vi in SW,δ that were or-

thonormal. Since the vj are in SW,δ, write vj = wj + δuj where wj ∈ W, uj is per-

pendicular to W, and
∥∥uj

∥∥ < 1. Let X be the n× i matrix [w1, · · · , wi], let Y be the

n× i matrix
[
v1, · · · , vj

]
, and let Z be the n× i matrix [u1, · · · , ui]. Because the wj

are in W and the uj are perpendicular to W, X′Z = 0 and Z′X = 0. Because the

vj are orthonormal, Y′Y = Ii. So, Ii = X′X + δ2Z′Z. Because the wj are in a i − 1

dimensional space, the matrix X′X is singular and so there is a v ∈ Ri of length one

such that v′X′Xv = 0. Because elements of Z and v are less than or equal to one in

absolute value, each element of Zv is less than or equal to i in absolute value. Thus

1 = v′v = δ2z′Z′Zv ≤ δ2ni2 < 1, which is a contradiction. Thus there cannot be

v1, · · · , vi in SW,δ that are orthonormal.

(3) If this were not true, then there would exist a δ > 0 and a sequence of v` and ε`

such that the ε` tend to zero and X−1
W,ε`

v` ∈ V, ‖v`‖ = 1, and v` /∈ SW,δ. We can write

v` = u` + w` where u` ∈ U and w` ∈ W. Since X−1
W,ε`

v` = 1
ε`

u` + w` ∈ V, we have

that u` + ε`w` ∈ V. Since ‖v`‖ = 1, u` and w` are orthogonal, and v` /∈ SW,δ, we have

‖w`‖ ≤ 1 and δ ≤ ‖u`‖ ≤ 1. Thus, lim`→∞ ε`w` = 0, and hence some subsequence

of the u` converges to a non-zero element of U ∩V, which is a contradiction. ¤

Lemma 10. If the SVAR model is exactly identified, then qj = n− j for 1 ≤ j ≤ n.

Proof. We proceed by contradiction. Suppose that it is not the case that qj = n− j

for 1 ≤ j ≤ n. Since the model is exactly identified, Rothenberg (1971)’s necessary

condition for local identification implies that the total number of restrictions, ∑n
i=1 qi,

must be at least (n− 1) n/2. Since we are assuming that it is not the case that qj =

n− j for 1 ≤ j ≤ n, this implies that there must be at least one index i with qi > n− i.

Since the qj are in decreasing order, this implies that qj > n − i for 1 ≤ j ≤ i. If

we define Vj to be the null space of the matrix Qj, then the dimension of Vj will

be n − qj < i. By Lemma 9, there exists a k × n matrix X for which there are no

orthonormal vectors p1, · · · , pi in Rn such that Xpj ∈ Vj for 1 ≤ j ≤ i. Let M (k, n)
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be the set of all k× n matrices and let

H̃ =
{

X ∈ M (k, n) | XP /∈ R̃ for all P ∈ O (n)
}

. (A5)

We have shown that H̃ is non-empty. The proof will be complete if we can show that

H̃ is open. To see this, note since f (U) is dense, H̃ ∩ f (U) would be a non-empty

open set as would f−1 (
H̃

)
. Since open sets are of positive measure, this would

contradict the fact that the SVAR is exactly identified.

To show that H̃ is open, it suffices to show that if the sequence Xj /∈ H̃ converges

to X, then X /∈ H̃. If Xj /∈ H̃ then there would exist Pj ∈ O (n) such that XjPj ∈
R̃. Since O (n) is a compact set, some subsequence of the Pj converges to some

orthogonal matrix P. Since R̃ is a closed subset, this implies that XP ∈ R̃ as desired.

¤

Proof of Theorem 8. This result follows directly for Lemmas 8 and 10. ¤

Proof of Theorem 7. If the SVAR is exactly identified, then by Theorem 8 qj = n− j for

1 ≤ j ≤ n. Clearly, the number of restrictions, ∑n
i=1 qi, is equal to (n− 1) n/2 and by

Lemma 7, the rank condition in Theorem 2 is satisfied for some (A0, A+) ∈ R.

On the other hand, since rank
(

Mj (X)
) ≤ qj + j, if rank condition in Theorem 2

is satisfied for some (A0, A+) ∈ R, it must be the case that qj ≥ n− j for 1 ≤ j ≤ n.

If it is also the case that the total number of restrictions is equal to (n− 1) n/2, then

qj = n− j for 1 ≤ j ≤ n. So, by Theorem 8, the SVAR is exactly identified. ¤

APPENDIX D. PROOF OF THEOREM 5

For linear restrictions on the contemporaneous structural coefficients, the system

will be triangular if there is an ordering of the equations and a linear transformation

of the variables such that the A0 is triangular. Since our convention is that q1 ≥
· · · ≥ qn, the equations (columns) will be ordered correctly, and so the system will

be triangular if there is a linear transformation of the variables such that A0 is upper

triangular. The following lemma gives a characterization that is more useful for our

purposes.

Lemma 11. Suppose the transformation f (·) is given by f (A0, A+) = A0. Let

Vj =
{

v ∈ Rn |Qjv = 0
}

, (A6)
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for 1 ≤ j ≤ n. The SVAR will be triangular if and only if V1 ⊂ · · · ⊂ Vn and the

dimension of Vj is j.

Proof. Suppose that V1 ⊂ · · · ⊂ Vn and that the dimension of Vj is j. This im-

plies that there exists vectors v1, · · · , vn such that v1, · · · , vj forms a basis for Vj. If

T = [v1, · · · , vn], then transforming the variables by T−1 will produce an upper

triangular system, and thus the system will be triangular.

Now suppose that the system is triangular and that the transformation that pro-

duces an upper triangular system is T−1. If T = [v1, · · · , vn], then a basis for Vj will

be v1, · · · , vj. From this, it follows that V1 ⊂ · · · ⊂ Vn and that the dimension of Vj

is j. ¤

We are now ready to prove Theorem 5.

Proof of Theorem 5. Consider an exactly identified SVAR with restrictions on the con-

temporaneous coefficients given by the matrices Q1, · · · , Qn, which are decreasing

in rank. Let G be defined by (9). Assume that G is empty. Let Vj be defined by (A6).

We show that V1 ⊂ · · · ⊂ Vn. If this were not the case, then we would construct an

A0 and a non-diagonal orthogonal matrix P such that both A0 and A0P satisfy the

restrictions, which would contradict the fact that G is empty. So assume that it is not

the case that V1 ⊂ · · · ⊂ Vn and let k̂ be the first k such that Vk is not a subset of Vk+1.

Note that k̂ < n− 1 because Vn = Rn. We first recursively construct the A0 and the

then the P.

Let a1 be any non-zero element of V1. Now assume that a1, · · · , ak have been

constructed such that aj ∈ Vj for 1 ≤ j ≤ k and a′iaj = 0 for 1 ≤ i < j ≤ k. There

exists a non-zero ak+1 such that Qk+1ak+1 = 0 and ai′ak+1 = 0 for 1 ≤ i ≤ k. Such a

vector exists because we have imposed at most qk+1 + k = n− 1 restrictions on Rn.

So we recursively constructed A0 = [a1, · · · , an].

We now recursively construct the orthogonal matrix P. For 1 ≤ j ≤ k̂, let pj = ej,

where ej is the jth column of the n× n identity matrix. Since V1 ⊂ · · · ⊂ Vk̂, a1, · · · , ak̂

forms a basis for Vk̂. Let V⊥ be the subspace of Vk̂+1 that is perpendicular to Vk̂.

Since Vk̂ is not a subset of Vk̂+1, the dimension of Vk̂ is k̂, and the dimension of Vk̂+1

is k̂ + 1, the dimension of V⊥ must be at least two. The vector ak̂+1 ∈ V⊥. Let âk̂+1 be

any element of V⊥ of length one that is not a multiple of ak̂+1. Because ak̂+1, · · · , an

forms a basis for the space perpendicular to a1, · · · , ak̂, âk̂+1 is a linear combination

of ak̂+1, · · · , an. This implies that there exists a pk̂+1 such that âk̂+1 = A0 pk̂+1, the
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first k̂ elements pf pk̂+1 are zero, and at least one of the last n− k̂− 1 elements of pk̂+1

is non-zero. Now assume that an orthonormal set p1, · · · , pk has been constructed,

where k̂ + 1 ≤ k ≤ n. Choose pk+1 ∈ Rn of length one so that Qk+1A0pk+1 = 0

and p′j pk+1 = 0 for 1 ≤ j ≤ k. Such an element exists because we have imposed

at most qk+1 + k = n − 1 restrictions. The matrix P = [p1, · · · , pn] is the required

non-diagonal orthonormal matrix. ¤

APPENDIX E. EXISTING ALGORITHMS FOR SVARS WITH SIGN RESTRICTIONS

Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) propose an alterna-

tive approach to SVAR modeling by imposing sign restrictions on impulse responses

themselves. Although Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005)

have the same basic idea, their algorithms for implementation are distinctively dif-

ferent. In this section, we briefly review each of these three algorithms and highlight

the problem related to computational efficiency.

E.1. Faust’s algorithm. Faust (1998) presents a way to check the robustness of any

claim from an SVAR. All possible identifications are checked against the claim, sub-

ject to the restriction that the SVAR produces the impulse response functions with

“correct” signs.

Faust (1998) shows that this problem is equivalent to solving an eigenvalue prob-

lem ∑M
i=0

R!
i!(R−i)! times, where R is the number of sign restrictions and M = max(n−

1, R). As Faust (1998) recognizes, this algorithm may be infeasible for a large VAR

system.

E.2. Canova and De Nicoló’s algorithm. Canova and De Nicoló (2002) also study

SVARs with sign restrictions imposed on impulse response. Their algorithm is based

on Theorem 10, whose proof is provided below.

Proof. The proof of Theorem 10 is provided as follows.

The matrix Qi,j
(
θi,j

)
is a Givens rotation. The proof is simply a careful applica-

tion of the algorithm for obtaining the QR decomposition via Givens rotations. We

follow Algorithm 5.2.2 of Golub and Van Loan (1996). The basic idea is that mul-

tiplying an n × n matrix X on the left by a Givens rotation Qi,j
(
θi,j

)
has the effect

of rotating the ith and jth rows of X in the counter-clockwise direction by θi,j radi-

ans and leaving all the other rows of X fixed. The rotation takes place in the plane

spanned by the ith and jth rows. We can choose θi,j so that the jth row is rotated so
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that its ith element becomes zero. The exact details of choosing such a θi,j are given

in Section 5.1.8 of Golub and Van Loan (1996). Thus by successively multiplying on

the left by the appropriate Givens rotations, we can transform, column by column,

any matrix into an upper triangular matrix. The θi,j are not unique since if a rotation

of θi,j radians will place a zero in the ith position of the jth row, then so will a rotation

by an additional π radians (180 degrees). Thus we can choose θi,j to be between 0

and π when i < j < n. When j = n, we choose the rotation that not only makes

the ith coordinate of the jth row zero, but also makes the ith coordinate of the ith row

non-negative. Applying this algorithm to the matrix P′ allows us to write
(

n−1

∏
i=1

n

∏
j=i+1

Qi,j
(
θi,j

)
)

P′ = S,

where S is upper triangular. Since P and the Qi,j
(
θi,j

)
are all orthogonal, so is S.

The only upper triangular orthogonal matrices are diagonal with plus or minus one

along the diagonal. Because of our choice of rotations, all the diagonal elements,

except the last, must be non-negative and hence equal to one. The results now follow

by multiplying P on the right and S = S−1 on the left. ¤

Based on this theorem, Canova and De Nicoló (2002) propose the following algo-

rithm for an SVAR with sign restrictions.

Algorithm 3.

(1) Draw a set of unrestricted parameters (A0, A+) from the posterior distribu-

tion.

(2) For each draw of (A0, A+), compute (B, Σ) and perform the Choleski decom-

position of Σ to get A∗0 .

(3) Determine a grid on θi,j for the set of all orthogonal matrices Qi,j(θi,j) in Theo-

rem 10.

(4) Perform a grid search to find an orthogonal matrix P such that the impulse

responses generated from A∗0P and B satisfy all the sign restrictions.

Theorem 10 allows for different ways to design a grid. Because the space of all

orthogonal n× n matrices has the dimension n (n− 1) /2, any grid that divides the

interval [−π/2, π/2] with M points (or on the interval [−π, π] with 2M points)

implies a search over 2Mn(n−1)/2 points in the space of all orthogonal n× n matrices.

Thus, it is infeasible to perform this grid search for a large value of n.
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E.3. Uhlig’s algorithm. Uhlig (2005)’s algorithm for estimating SVARs with sign

restrictions on impulse responses is stated as follows.

Algorithm 4.

(1) Draw a set of unrestricted parameters (A0, A+) from the posterior distribution.

(2) For each draw of (A0, A+), compute (B, Σ).

(3) Compute the eigenvectors of Σ normalized so as to form an orthonormal basis

of Rn. Denote these eigenvectors by xj for j = 1, . . . , n and let λj for j = 1, . . . , n be

the corresponding eigenvectors.

(4) Draw

(α1, . . . , αn−1), with
n

∑
j=1

α2
j = 1

from a uniform distribution over the (n− 1)-dimensional sphere.

(5) Construct the impact impulse response vector a to a particular structural shock

under study according to

a =
n

∑
j=1

(
αj

√
λj

)
xj.

(6) Construct a matrix C such that CC′ = Σ and a is a column of C.

(7) Use C and B to generate the impulse responses.

(8) If these impulse responses satisfy the sign restrictions, keep the draw; other-

wise, repeat Steps (1)-(7).

This algorithm works well for sign restrictions on the impulse responses to one

structural shock. If sign restrictions concern impulse responses to a number of struc-

tural shocks, as studied by Gambetti, Pappa, and Canova (forthcoming), one has

to construct different a’s recursively and the algorithm quickly becomes inefficient.

Our algorithm based on the Householder transformation is more efficient in dealing

with sign restrictions on impulse responses to a number of structural shocks.
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