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1 Introduction.

The issue of normalization arises whenever two different values for a vector of unknown

parameters imply the identical economic model. Although one�s initial reaction might

be that it makes no difference how one resolves this ambiguity, a host of counterexamples

establish that it can matter a great deal.

Certainly it is well understood that a given nonlinear restriction g(θ) = 0 can be written

in an inÞnite number of ways, for example, as g∗(θ) = θ1g(θ) = 0 for θ1 the Þrst element

of the vector θ. Any approach derived from the asymptotic Taylor approximation g(�θ) '

g(θ) + ∇g(θ)(�θ − θ) can of course give different results for different functions g(.) in a

given Þnite sample. Indeed, one can obtain any result one likes for a given sample (accept

or reject the null hypothesis) by judicious choice of g(.) in formulating a Wald test of a

nonlinear restriction (e.g., Gregory and Veall, 1985).

Likewise, a model implying E[g(θ;yt)] = 0 can be written an inÞnite number of ways.

For example, the instrumental variable orthogonality condition E[(yt − βzt)xt] = 0 can

equivalently be written as the reverse regression E[(zt−αyt)xt] = 0 for α = 1/β, though for

xt a vector, the GMM estimates fail to satisfy �α = 1/�β in a Þnite sample. The appropriate

way to normalize such GMM conditions and their relation to the weak instrument problem

has been the focus of much recent research, including Pagan and Robertson (1997), Hahn

and Hausman (2002), and Yogo (2003).

Less widely appreciated is the fact that normalization can also materially affect the

conclusions one draws with likelihood-based methods. Here the normalization problem arises
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when the likelihood f(y;θ1) = f(y;θ2) for all possible values of y. Since θ1 and θ2 imply

the identical observed behavior and since the maximum likelihood estimates themselves are

invariant with respect to a reparameterization, one might think that how one normalizes

would be of no material relevance in such cases. If one were interested in reporting only

the maximum likelihood estimate and the probability law that it implies for y, this would

indeed be the case. The problem arises when one wishes to go further and make a statement

about a region of the parameter space around θ1, for example, in constructing conÞdence

sets. In this case, normalization is not just a rule for selecting θ1 over θ2 but in fact

becomes a rule for selecting a whole region of points {θ∗1 : θ∗1 ∈ Ω(θ1)} to associate with θ1.

A poor normalization can have the consequence that two nearly observationally equivalent

probability laws (f(y;θ1) arbitrarily close to f(y;θ
∗
1)) are associated with widely different

points in the parameter space (θ1 arbitrarily far from θ∗1). The result can be a multimodal

distribution for the MLE �θ that is grossly misrepresented by a simple mean and variance.

More fundamentally, the economic interpretation one places on the region Ω(θ1) is inherently

problematic in such a case.

This problem has previously been recognized in a variety of individual settings. Phillips

(1994) studied the tendency (noted in a number of earlier studies cited in his article) for

Johansen�s (1988) normalization for the representation of a cointegrating vector to produce

occasional extreme outliers, and explained how other normalizations avoid the problem by

analyzing their exact small-sample distributions. Geweke (1996) and particularly Kleibergen

and Paap (2002) noted the importance of normalization for Bayesian analysis of cointegrated
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systems. The �label-switching� problem for mixture models has an extensive statistics

literature discussed below. Waggoner and Zha (2003a) discussed normalization in structural

VARs, documenting with a very well-known model that, if one calculates standard errors for

impulse-response coefficients using the algorithms that researchers have been relying on for

twenty years, the resulting 95% conÞdence bounds are 60% wider than they should be under

a better normalization. Waggoner and Zha suggested a principle for normalizing structural

VARs, which they called the �likelihood principle,� that avoids these problems.

To our knowledge, all previous discussions have dealt with normalization in terms of

the speciÞc issues arising in a particular class of models, with no unifying treatment of the

general nature of the problem and its solution. The contribution of the present paper is

to articulate the general statistical principles underlying the problems heretofore raised in

isolated literatures. We propose a general solution to the normalization problem, which we

call the �identiÞcation principle,� which turns out to include Waggoner and Zha�s likelihood

principle as a special case.

We Þnd it helpful to introduce the key issues in Section 2 with a transparently simple

example, namely estimating the parameter σ for an i.i.d. sample of N(0, σ2) variables.

Section 3 illustrates how the general principles proposed in Section 2 apply in mixture

models. Section 4 discusses structural VARs, while Section 5 investigates cointegration.

A number of other important econometric models could also be used to illustrate these

principles, but are not discussed in detail in this paper. These include binary response

models, where one needs to normalize coefficients in a latent process or in expressions that
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only appear as ratios (e.g., Hauck and Donner, 1977; Manski, 1988), dynamic factor models,

where the question is whether a given feature of the data is mapped into a parameter of factor

i or factor j (e.g., Otrok and Whiteman, 1998); and neural networks, where the possibility

arises of hidden unit weight interchanges and sign ßips (e.g., Chen, Lu, and Hecht-Nielsen,

1993; Rüger and Ossen, 1996). Section 6 summarizes our practical recommendations for

applied research in any setting requiring normalization.

2 Normalization and the identification principle.

We can illustrate the key issues associated with normalization through the following example.

Suppose yt = σεt where εt ∼ i.i.d. N(0, 1). Figure 1 plots the log likelihood for a sample

of size T = 50,

log f(y1, ..., yT ; σ) = −(T/2) log(2π)− (T/2) log(σ2)−
TX
t=1

y2t /(2σ
2),

as a function of σ, with the true σ0 = 1. The likelihood function is of course symmetric,

with positive and negative values of σ implying identical probabilities for observed values

of y. One needs to restrict σ further than just σ ∈ <1 in order to infer the value of σ

from observation of y. The obvious (and, we will argue, correct) normalization is to restrict

σ > 0. But consider the consequences of using some alternative rule for normalization, such

as σ ∈ A = {(−2, 0]∪ [2,∞)}. This also would technically solve the normalization problem,

in that distinct elements of A imply different probability laws for yt. But inference about σ

that relies on this normalization runs into three potential pitfalls.
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First, the Bayesian posterior distribution π(σ|y) is bimodal and classical conÞdence re-

gions are disjoint. This might not be a problem as long as one accurately reported the

complete distribution. However, if we had generated draws numerically from π(σ|y) and

simply summarized this distribution by its mean and standard deviation (as is often done in

more complicated, multidimensional problems), we would have a grossly misleading inference

about the nature of the information contained in the sample about σ.

Second, the economic interpretation one places on σ is fundamentally different over dif-

ferent regions of A. In the positive region, higher values of σ imply more variability of yt,

whereas in the negative region, higher values of σ imply less variability of yt. If one had

adopted this normalization, the question of whether σ is large or small would not be of

fundamental interest, and why a researcher would even want to calculate the posterior mean

and standard deviation of σ is not at all clear.

Third, the economic interpretation one places on the interaction between variables is

fundamentally different over different regions of A. In VAR analysis, a common goal is to

estimate the effect of shocks on the variables in the system. For this example, the impulse

response function is simply

∂yt+j/∂εt =


σ j = 0

0 j = 1, 2, ...

.

Thus the consequences of a one unit increase in εt are different over different regions of the

parameter space. In the positive region, a positive shock to εt is interpreted as something

that increases yt, whereas over the negative region, a positive shock to εt is interpreted as
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something that decreases yt. Again, if this is the normalization one had imposed, it is not

clear why one would ever want to calculate an object such as ∂yt+j/∂εt.

In this example, these issues are sufficiently transparent that no researcher would ever

choose such a poor normalization or fall into these pitfalls. However, we will show below

that it is very easy to make similar kinds of mistakes in a variety of more complicated

econometric contexts. Before doing so, we outline the general principles that we propose as

a guideline for the normalization question in any setting.

Our starting point is the observation that the normalization problem is fundamentally a

question of identiÞcation. Let θ ∈ <k denote the parameter vector of interest and f(y;θ)

the likelihood function. Following Rothenberg (1971), two parameter points θ1 and θ2 are

said to be observationally equivalent if f(y;θ1) = f(y;θ2) for all values of y. The structure

is said to be globally identiÞed at the point θ0 if there is no other allowable value for θ

that is observationally equivalent to θ0. The structure is said to be locally identiÞed at

θ0 if there exists an open neighborhood around θ0 containing no other value of θ that is

observationally equivalent to θ0.

In the absence of a normalization condition, the structure would typically be globally

unidentiÞed but locally identiÞed. The two points implying identical observed behavior

(θ1 and θ2) are typically separated in <k. However, unless there are discontinuities in the

likelihood surface, there must be loci in <k along which the structure is locally unidentiÞed

as well. These loci characterize the boundaries along which the interpretation of parameters

is fundamentally ambiguous and across which the interpretation of parameters necessarily
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changes. The normalization problem is to restrict θ to a subset A of <k. Our proposal is

that the boundaries of A should correspond to the loci along which the structure is locally

unidentiÞed. The check of a candidate normalization A is thus to make sure that the

structure is locally identiÞed at all interior points of A. We describe this as choosing a

normalization according to the identiÞcation principle.

The loci along which the observationally equivalent structures (θ1 and θ2)merge together

typically take one of two forms. If elements of the information matrix,

=(θ) = −E
µ
∂2f(y;θ)

∂θ ∂θ0

¶
(1)

exist and are everywhere continuous, then these loci are characterized by the points in <k

for which the information matrix becomes singular; see Rothenberg (1971). A second case

occurs when the log likelihood diverges to −∞ when approached from either side of the

locus.

Figure 1 represents an example of the second case. Here, since k = 1, the locus is simply

a point in <1, namely, σ = 0. Using this locus as the boundary for A means deÞning A by

the condition σ > 0, the common sense normalization for this transparent example.

In their analysis of structural VAR�s, Waggoner and Zha (2003a) suggest using an al-

gorithm that ensures that any candidate value θ satisfy the condition f(y;θ∗) > 0 for

θ∗ = sθ+(1 − s)�θ for all s ∈ [0, 1] and �θ the MLE, which they refer to as the likelihood

principle for normalization. This condition prevents θ and �θ from falling on opposite sides

of any locus along which the log likelihood is −∞, and thus has the consequence of using

these loci to determine the boundaries of A. Thus the likelihood principle is a special case
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of the identiÞcation principle.

The following sections illustrate these ideas in a number of different settings.

3 Mixture models.

One class of models for which the normalization problem arises is when the observed data

come from a mixture of different distributions or regimes, as in the Markov-switching models

following Hamilton (1989). Consider for illustration the simplest i.i.d. mixture model, in

which yt is drawn from a N(µ1, 1) distribution with probability p and a N(µ2, 1) distribution

with probability 1− p, so that its density is

f(yt;µ1, µ2, p) =
p√
2π
exp

·−(yt − µ1)2
2

¸
+
1− p√
2π
exp

·−(yt − µ2)2
2

¸
. (2)

The model is unidentiÞed in the sense that, if one switches the labels for regime 1 and regime

2, the value of the likelihood function is unchanged: f(yt;µ1, µ2, p) = f(yt;µ2, µ1, 1 − p).

Before we can make any inference about the value of θ = (µ1, µ2, p)
0 we need a resolution

of this �label-switching� problem. Treatments of this problem include Celeux, Hurn, and

Robert (2000), Stephens (2000), and Frühwirth-Schnatter (2001).

How we choose to resolve the problem depends in part on why we are interested in the

parameters in the Þrst place. One possibility is that (2) is simply proposed as a ßexible rep-

resentation of the density of yt. Here one has no interest in the value of θ itself, but only in

the shape of the distribution f(.). If this is one�s goal, the best approach may be to simulate

the posterior distribution of θ without imposing any normalization at all, deliberately intro-
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ducing jumps in the simulation chain to make sure that the full range of permutations gets

sampled, and checking to make sure that the inferred distribution is exactly multimodally

symmetric (e.g., Celeux, Hurn, and Robert, 2000). This can be more difficult to implement

than it sounds, particularly if one tries to apply it to higher-dimensional problems. How-

ever, once the unrestricted multimodal distribution is successfully obtained, as long as one

is careful to use this distribution only for purposes of making calculations about f(.), the

multimodality of the distribution and ambiguity about the nature of θ need not introduce

any problems.

A second reason one might be interested in this model is as a structural description of

a particular economic process for which the parameters θ have clear and distinct economic

interpretations. For example, yt might be the value of GDP growth in year t, µ1 the growth

rate in expansions, µ2 the growth rate in recessions, and p the probability of an expansion.

In this case, the structural interpretation dictates the normalization rule that should be

adopted, namely µ1 > µ2. A nice illustration and extension of this idea is provided by

Smith and Summers (2003).

A third case is where the researcher believes that there is an underlying structural mech-

anism behind the mixture distribution, but its nature is not currently understood. For

example, yt might be an interest rate. The two means might be revealed in later research to

be related to economic expansions and contractions, or to changes in policy, but the nature

of regimes is not known a priori. For this case, the researcher believes that there exists a

unique true value of θ0. The goal is to describe the nature of the two regimes, e.g., one
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regime is characterized by 4% higher interest rates on average, for which purposes point

estimates and standard errors for θ are desired. One needs to restrict the space of allowed

values of θ to an identiÞed subspace in order to be able to do that.

One way one might choose to restrict the space would be to specify p > 0.5, as in Aitkin

and Rubin (1985) or Lenk and DeSarbo (2000). However, according to the identiÞcation

principle discussed in the introduction, this is not a satisfactory solution to the normalization

problem. This is because even if one restricts p > 0.5, the structure is still locally unidentiÞed

at any point at which µ1 = µ2, for at any such point the likelihood function does not depend

on the value of p.

To illustrate what difference the choice of normalization makes for this example, we

calculated the log likelihood for a sample of 50 observations from the above distribution

with µ1 = 1, µ2 = −1, and p = 0.8. Figure 2 plots contours of the log likelihood as a

function of µ1 and µ2 for alternative values of p. The maximum value for the log likelihood

(-79) is achieved near the true values, as shown in the upper left panel. The lower right

panel is its exact mirror image, with a second maximum occurring at µ1 = −1, µ2 = 1, and

p = 0.2. In the middle right panel (p = 0.5), points above the 45o line are the mirror image

of those below. The proposed normalization (p > 0.5) restricts the space to the Þrst three

panels. This solves the normalization problem in the sense that there is now a unique global

maximum to the likelihood function, and any distinct values of θ within the allowable space

imply different probability laws for yt. However, by continuity of the likelihood surface, each

of these panels has a near symmetry across the 45o line that is an echo of the exact symmetry
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of the p = 0.5 panel. Conditional on any value of p, the normalization p > 0.5 therefore

results in one mass of probability centered at µ1 = 1, µ2 = −1, and a second smaller mass

centered at µ1 = −1, µ2 = 1. Hence, although restricting p > 0.5 can technically solve

the normalization problem, it does so in an unsatisfactory way. The problem arises because

points interior to the normalized region include the axis µ1 = µ2, along which the labelling

of regimes could not be theoretically deÞned, and across which the substantive meaning of

the regimes switches.1

An alternative normalization would set µ1 > µ2, deÞning the allowable parameter space

by the upper left triangle of all panels. In contrast to the Þrst normalization, the nor-

malization µ1 > µ2 satisÞes the identiÞcation principle� θ is locally identiÞed at all points

interior to this region. Note that over this region, the global likelihood surface is much

better behaved.

To investigate this in further detail, we calculated the Bayesian posterior distributions.

For a Bayesian prior we speciÞed µi ∼ N(0, 5) (with µ1 independent of µ2) and used a uniform

prior for p. We will comment further on the role of these priors below. Appendix A describes

the speciÞcs of the Gibbs sampler used to simulate draws from the posterior distribution of

θ. For each draw of θ(i), we kept θ(i) if p(i) > 0.5, but used (µ(i)2 , µ
(i)
1 , 1−p(i))0 otherwise. We

ran the Gibbs sampler for 5500 iterations on each sample, with parameter values initialized

1 This observation that simply restricting θ to an identiÞed subspace is not a satisfactory solution to the
label-switching problem has also been forcefully made by Celeux, Hurn and Rober (2000), Stephens (2000),
and Frühwirth-Schnatter (2001), though none of them interpret this problem in terms of the identiÞcation
principle articulated here. Frühwirth-Schnatter suggested plotting the posterior distributions under alter-
native normalizations to try to Þnd one that best respects the geometry of the posterior. Celeux, Hurn and
Robert (2000) and Stephens (2000) proposed a decision-theoretic framework whose relation to our approach
is commented on below.
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from the prior, discarded the Þrst 500 iterations, and interpreted the last 5000 iterations

as draws from the posterior distribution of parameters for that sample. We repeated this

process on 1000 different samples each of size T = 50. The Bayesian posterior densities

(regarding these as 5,000,000 draws from a single distribution) are plotted in Figure 3.2

The distribution of µ1 is downward biased as a result of a bulge in the distribution, which

represents µ2 estimates that get labelled as µ1. More noticeable is the upward bias for µ2

introduced from the same label switching. And although the average value of p is centered

around the true value of 0.8, this results almost by force from the normalization p > 0.5;

it is not clear that the information in the sample has been used in any meaningful way to

reÞne the estimate of p.

Figure 4 presents posterior distributions for the µ1 > µ2 normalization. The distributions

for µ1 and µ2 are both much more reasonable. The distribution for µ2 is still substantially

spread out and upward biased, though there is simply little information in the data about

this parameter, as a typical sample contains only ten observations from distribution 2. The

distribution of p has its peak near the true value of 0.8, but also is somewhat spread out

and has signiÞcant mass for small values. Evidently, there are still a few samples in which

label switching has taken place with this normalization, despite the fact that it satisÞes our

2 These are nonparametric densities calculated with a triangular kernel (e.g., Silverman, 1992, pp. 27
and 43):

�fθ(t) =
1

hI

IX
i=1

max
³
0, 1− h−1|θ(i) − t|

´
where θ(i) is the ith Monte Carlo draw of a given parameter θ, I = 5, 000, 000 is the number of Monte Carlo
draws, and �fθ(t) is our estimate of the value of the density of the parameter θ evaluated at the point θ = t.
The bandwidth h was taken to be 0.01.
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identiÞcation principle.

IdentiÞcation as deÞned by Rothenberg (1971) is a population property� parameters θ1

and θ2 are observationally distinguishable if there exists some potentially observable sample

(y1, . . . , yT ) for which the values would imply different values for the likelihood. For local

identiÞcation, the appropriate measure is therefore based on the population information ma-

trix (1). However, even though a structure may be theoretically identiÞed, the identiÞcation

can be weak, in the sense that there is very little information in a particular observed sample

that allows us to distinguish between related points. For example, consider those samples

in the above simulations in which very few observations were generated from distribution

2. The posterior distribution for µ2 for these samples is very ßat, and a large value of µ2

is likely to be drawn and labeled as representing state 1 by the rule µ1 > µ2. This makes

the inference of µ1 and p contaminated and distorted. For this reason, it may be helpful to

consider another version of the identiÞcation principle based on the sample hessian,

H(θ) = −
TX
t=1

∂2 log f(yt|yt−1,yt−2, . . . ,y1;θ)
∂θ ∂θ0

, (3)

evaluated at the MLE �θ.

To motivate this alternative implementation of the identiÞcation principle, let θ1 and θ2

represent two parameter values that imply the identical population probability law, so that

f(yt|yt−1,yt−2, . . . ,y1;θ1) = f(yt|yt−1,yt−2, . . . ,y1;θ2) for all possible realizations. Sup-

pose that for the observed sample, in a local neighborhood around the maximum likelihood

estimate �θ ∈ <k, iso-likelihood contours of the log likelihood were exact spheroids in <k.3
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Then if θ1 is closer in Euclidean distance to �θ than is θ2, it must be the case that the

line segment connecting �θ with θ2 crosses a locus along which θ is locally unidentiÞed.

Accordingly, if for any simulated θ(i) we always selected the permutation that is closest in

Euclidean distance to �θ, we would implicitly be using the identiÞcation principle to specify

the allowable parameter space.

This procedure would work as long as the iso-likelihood contours between �θ and θ1 (if θ1

is the value selected by this approach) are all exact spheroids. But note that we can always

reparameterize the likelihood in terms of λ = Kθ so as to to make the likelihood contours

in terms of λ approximate spheroids in the vicinity of �θ, by choosing K to be the Cholesky

factor of H(�θ).4 Choosing the value of λ that is closest to �λ is equivalent to choosing the

value of θ that minimizes

(θ − �θ)0H(�θ)(θ − �θ). (4)

Expression (4) will be recognized as the Wald statistic for testing the null hypothesis that

θ is the true parameter value.

The procedure to implement this idea works as follows. After simulating the ith draw

3 Obviously the log likelihood cannot globally be perfect spheroids since the equivalence of
f(yt|yt−1,yt−2, ...,y1,θ1) with f(yt|yt−1,yt−2, ...,y1,θ2) implies there must be a saddle when one gets
far enough away from θ̂.

4 Let L(θ) =PT
t=1 log f(yt|yt−1,yt−2, ...,y1;θ) be the log likelihood. To a second-order Taylor approx-

imation,

L(θ)∼=L(θ̂)−(1/2)(θ − θ̂)0H(θ̂)(θ − θ̂)
= L(θ̂)−(1/2)(θ − θ̂)0K0K(θ − θ̂)
= L(K−1λ̂)−(1/2)(λ− λ̂)0(λ− λ̂)

whose contours as functions of λ are spheroids.
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θ(i), calculate all the observationally equivalent permutations of this draw (θ(i)1 ,θ
(i)
2 , . . . ,θ

(i)
M ).

For each θ(i)m , calculate (θ
(i)
m−�θ)

0
H(�θ)(θ(i)m−�θ) as if testing the null hypothesis that θ = θ(i)m

where �θ is the maximum likelihood estimate. The actual value for θ(i)m that is used for θ(i) is

the one with the minimum Wald statistic. We will refer to this as the Wald normalization.

In practice we have found that the algorithm is slightly more robust when we replace the

second-derivative estimate in (3) with its outer-product analog:

�H =
TX
t=1

·
∂ ln f(yt|yt−1,yt−2, . . . ,y1;θ)

∂θ

¸ ·
∂ ln f(yt|yt−1,yt−2, . . . ,y1;θ)

∂θ

¸0 ¯̄̄̄
¯
θ=θ̂

. (5)

Note that the Wald normalization is related to the decision-theoretic normalizations

proposed by Celeux, Hurn and Robert (2000) and Stephens (2000). They suggested that

the ideal normalization should minimize the posterior expected loss function. For example,

in Stephens�s formulation, one selects themi for which the loss function L0(�θ;θ
(i)

mi
) is smallest.

Stephens proposed implementing this by iterating on a zig-zag algorithm, Þrst taking the

normalization for each draw (a speciÞcationm1,m2, ...,mN for N the number of Monte Carlo

draws) as given and choosing �θ so as to minimize N−1PN
i=1 L0(�θ;θ

(i)

mi
), and then taking �θ

as given and selecting a new normalization mi for the ith draw so as to minimize L0(�θ;θ
(i)

mi
).

Our procedure would thus correspond to the decision-theoretic optimal normalization if

the loss function were taken to be L0(�θ;θ) = (θ − �θ)0H(�θ)(θ − �θ) and we were to adopt a

Stephens zig-zag iteration, replacing the MLE �θ at each zag with that iteration�s Bayesian

posterior estimate (the minimizer of N−1PN
i=1 L(�θ;θ

(i)

mi
)). Our speciÞcation is also closely

related to the Celeux, Hurn and Robert�s loss function that minimizes (θ − �θ)0S(�θ)(θ − �θ)

for S(�θ) a diagonal matrix containing reciprocals of the variance of elements of θ across
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Monte Carlo draws.

Figure 5 displays the posterior densities for the Wald normalization. These offer a

clear improvement over the p > 0.5 normalization, and do better at describing the density

of p than does the µ1 > µ2 normalization. Unfortunately, the Wald normalization seems

to do slightly worse at describing the distributions of µ1 and µ2 than does the µ1 > µ2

normalization.

We repeated the above calculations for samples of size T = 10, 20, 50, and 100. For the

nth generated sample, we calculated the difference between the posterior mean E(θ|y(n))

and true value θ = (1,−1, 0.8)0. The mean squared errors across samples n are plotted as

a function of the sample size T in Figure 6. The µ1 > µ2 normalization produces lower

mean squared errors for any sample size for either of the mean parameters, substantially so

for µ2. The p > 0.5 and Wald normalizations do substantially better than the µ1 > µ2

normalization in terms of estimating p. Curiously, though, the MSE for the p > 0.5

normalization deteriorates as sample size increases.

Another key question is whether the posterior distributions accurately summarize the

degree of objective uncertainty about the parameters. For each sample, we calculated a 90%

conÞdence region for each parameter as implied by the Bayesian posterior distribution. We

then checked whether the true parameter value indeed fell within this region, and calculated

the fraction of samples for which this condition was satisÞed. Figure 7 reports these 90%

coverage probabilities for the three normalizations. Although we have seen that the p > 0.5

and Wald normalizations produce substantially better point estimates of p, they signiÞcantly
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distort the distribution. The µ1 > µ2 normalization, despite its poorer point estimate, would

produce a more accurately sized test of the null hypothesis p = p0. It also produces the

most accurately sized test of the hypotheses µ1 = µ10 or µ2 = µ20 for large samples.

The superior point estimate of the parameter p that is obtained with the p > 0.5 nor-

malization in part results from the interaction between the normalization rule and the prior.

Note that the uniform prior for p implies that with no normalization (or with a normalization

based solely on µ1 > µ2), the prior expectation of p is 0.5. However, when a uniform prior

is put together with the p > 0.5 normalization, this implies a prior expectation of 0.75.5

Given the true value of p = 0.8 used in the simulations, the normalization turns what was

originally a vague prior into quite a useful description of the truth.

The normalization µ1 > µ2 similarly interacts with the prior for µ in this case to sub-

stantially improve the accuracy of the prior information. If the prior is µ1
µ2

 ∼ N

 0
0

 ,
 ς2 0

0 ς2


 , (6)

then E(µ∗1 = max{µ1, µ2}) = ς/
√
π. 6 For the prior used in the above calculations, ς =

√
5.

Hence the prior expectation of µ∗1 is 1.26, and likewise E(µ
∗
2) = −1.26, both close to the

true values of ±1. To see how the prior can adversely interact with normalization, suppose

instead we had set ς2 = 100. In the absence of normalization, this would be an attractive

uninformative prior. With the normalization µ1 > µ2, however, it implies a prior expectation

E(µ∗1) = 5.64 and a nearly even chance that µ∗1 would exceed this value, even though in

5 If p ∼ N(U(0, 1) and p∗ = max{p, 1− p}, then E(p∗) = 0.75.
6 See Ruben (1954, Table 2).
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100,000 observations on yt, one would not be likely to observe a single value as large as this

magnitude that is proposed as the mean of one of the subpopulations.7 Likewise the prior

is also assigning a 50% probability that µ2 < −5, when the event yt < −5 is also virtually

impossible.

Figure 8 compares mean squared errors that would result from the µ1 > µ2 normalization

under different priors. Results for the N(0, 5) prior are represented by the solid lines. This

solid line in the top panel of Figure 8 is identical to the solid line in the top panel of Figure

6, but the scale is different in order to try to convey the huge mean squared errors for µ1

that result under the N(0, 100) prior (the latter represented by the dashed line in Figure

8). Under the N(0, 100) prior, the µ1 > µ2 normalization does a substantially worse job

at estimating µ1 or p than would either of the other normalizations for sample sizes below

50. Surprisingly, it does a better job at estimating µ2 for moderate sample sizes precisely

because the strong bias introduced by the prior offsets the bias of the original estimates.

It is clear from this discussion that we need to be aware not only of how the normalization

conforms to the topography of the likelihood function, but also with how it interacts with any

prior that we might use in Bayesian analysis. Given the normalization µ1 > µ2, rather than

the prior (6), it seems better to employ a truncated Gaussian prior, where µ1 ∼ N(µ1, ς
2
1)

and

π(µ2|µ1) =


1

Φ[(µ1−µ2)/ς2]
√
2πς2

exp
³
−(µ2−µ2)

2

2ς2
2

´
if µ2 ≤ µ1

0 otherwise
(7)

7 The probability that a variable drawn from the distribution with the larger mean (N(1, 1)) exceeds 5.5
is 0.00000340.
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for Φ(z) = Prob(Z ≤ z) for Z ∼ N(0, 1). Here µ2 and ς22 denote the mean and variance of

the distribution that is truncated by the condition µ2 < µ1. One drawback of this truncated

Gaussian prior is that it is no longer a natural conjugate for the likelihood, and so the Gibbs

sampler must be adapted to include a Metropolis-Hastings step rather than a simple draw

from a normal distribution, as detailed in Appendix A.

We redid the above analysis using this truncated Gaussian prior with µ1 = µ2 = 0 and

ς21 = ς22 = 5. When µ1 = 0, for example, this prior implies an expected value for µ2 of

µ2 + ς2M2 = −1.78 where M2 = −φ(c2)/Φ(c2) = −0.7979 with c2 = (µ1 − µ2)/ς2 = 0 and

a variance for µ2 of ς
2
2[1 −M2(M2 − c2)] = 1.82.8 Mean squared errors resulting from

this truncated Gaussian prior are reported in the dotted lines in Figure 8. These uniformly

dominate those for the simple N(0, 5) prior.

To summarize, the p > 0.5 normalization introduces substantial distortions in the Bayesian

posterior distribution that can be largely avoided with other normalizations. These distor-

tions may turn out favorably for purposes of generating a point estimate of p itself, so

that if p is the only parameter of interest, the normalization might be desired on these

grounds. Notwithstanding, conÞdence regions for p that result from this approach are not

to be trusted. By contrast, normalization based on the identiÞcation principle seems to

produce substantially superior point estimates for the other parameters and much better

coverage probabilities in almost all cases. Moreover, one should check to make sure that

the prior used is sensible given the normalization that is to be adopted� what functions as a

8 See for example Maddala (1983, pp. 365-366).
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vague prior for one normalization can be signiÞcantly distorting with another normalization.

4 Structural VAR’s.

Let yt denote an (n× 1) vector of variables observed at date t. Consider a structural VAR

of the form

B0yt = k+B1yt−1 +B2yt−2 + · · ·+Bpyt−p + ut (8)

where ut ∼ N(0,D2) with D a diagonal matrix. A structural VAR typically makes both

exclusion restrictions and normalization conditions on B0 in order to be identiÞed. To use a

familiar example (e.g., Hamilton, 1994, pages 330-331), let qt denote the log of the number of

oranges sold in year t, pt the log of the price, and wt the number of days with below-freezing

temperatures in Florida (a key orange-producing state) in year t. We are interested in a

demand equation of the form

qt = βpt + δ
0
1xt + u1t (9)

where xt = (1,y
0
t−1,y

0
t−2, . . . ,y

0
t−p)

0 and the demand elasticity β is expected to be negative.

Quantity and price are also determined by a supply equation,

qt = γpt + hwt + δ
0
2xt + u2t,

with the supply elasticity expected to be positive (γ > 0) and freezing weather should

discourage orange production (h < 0). We might also use an equation for weather of the

form wt = δ
0
3xt+u3t, where perhaps δ3 = 0. This system is an example of (8) incorporating

both exclusion restrictions (weather does not affect demand directly, and neither quantity
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nor price affect the weather) and normalization conditions (three of the elements of B0 have

been Þxed at unity):

B0 =


1 −β 0

1 −γ −h

0 0 1

 . (10)

The latter seems a sensible enough normalization, in that the remaining free parameters

(β, γ, and h) are magnitudes of clear economic interpretation and interest. However, the

identiÞcation principle suggests that it may present problems, in that the structure is uniden-

tiÞed at some interior points in the parameter space. SpeciÞcally, at h = 0, the value of

the likelihood would be unchanged if β is switched with γ. Moreover, the log likelihood

approaches −∞ as β → γ.

To see the practical consequences of this, consider the following parametric example:
1 2 0

1 −0.5 0.5

0 0 1




qt

pt

wt

 =

0.8 1.6 0

1.2 −0.6 0.6

0 0 1.8




qt−1

pt−1

wt−1

+


0 0 0

−0.8 0.4 −0.4

0 0 −0.9




qt−2

pt−2

wt−2

+

udt

ust

uwt

 . (11)

In this example, the true demand elasticity β = −2 and supply elasticity γ = 0.5, while

D = I3. Demand shocks are AR(1) with exponential decay factor 0.8 while supply and

weather shocks are AR(2) with damped sinusoidal decay.
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Figure 9 shows contours of the concentrated log likelihood for a sample of size T = 50

from this system.9 Each panel displays contours of L(β, γ, h) as functions of β and γ for

selected values of h. The middle right panel illustrates both problems with this normalization

noted above: when h = 0, the likelihood function is unchanged when β is switched with γ.

Furthermore, the log likelihood is −∞ along the locus β = γ, which partitions this panel

into the two regions that correspond to identical values for the likelihood surface.

The global maximum for the likelihood function occurs at β = −2.09, γ = 0.28, and

h = −0.69, close to the true values, and corresponding to the hill in the upper left triangle

of the bottom left panel in Figure 9. Although the upper left triangle is not the mirror

image of the lower right in this panel, it nevertheless is the case that, even at the true value

of h, the likelihood function is characterized by two separate concentrations of mass, one

around the true values (β = −2, γ = 0.5) and a second smaller mass around their ßipped

values (β = 0.5, γ = −2). Although the posterior probabilities associated with the former

are much larger than the latter, the likelihood function merges continuously into the exact

mirror image case as h approaches zero, at which the masses become identical. Because the

likelihood function is relatively ßat with respect to h, the result is a rather wild posterior

distribution for parameters under this normalization.

To describe this distribution systematically, we generated 1000 samples {yt}Tt=1 each
9 The likelihood has been concentrated by Þrst regressing qt and pt on yt−1 and yt−2, and regressing

wt on wt−1 and wt−2, to get a residual vector ût and then evaluating at the true D = I3. That is, for
B0(β, γ, h) the matrix in (10), we evaluated

L(β, γ, h) = −1.5T ln(2π) + (T/2) ln(|B0|2)− (1/2)
TX
t=1

(B0ût)
0(B0ût).
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of size T = 50 from this model, and generated 100 draws from the posterior distribution

of (β, γ, h, d1, d2, d3|y1, ...,yT ) for each sample using a diffuse prior; see Appendix B for

details on the algorithm used to generate these draws. This is analogous to what an applied

researcher would do in order to calculate standard errors if the maximum likelihood estimates

for the researcher�s single observed sample happened to equal exactly the true values that had

actually generated the data. The 95% conÞdence interval for β over these 100,000 draws is

the range [−11.3,+5.5]. A particularly wild impulse response function ψij(k) = ∂yj,t+k/∂uit

is that for ψ12(k), the effect of a demand shock on price. The mean value and 90% conÞdence

intervals are plotted as a function of k in the upper left panel of Figure 10. It is instructive

(though not standard practice) to examine the actual probability distribution underlying

this familiar plot. The upper left panel of Figure 11 shows the density of ψ12(0) across these

100,000 draws, which is curiously bimodal. That is, in most of the draws, a one-unit shock

to demand is interpreted as something that raises the price by 0.5, though in a signiÞcant

minority of the draws, a one-unit shock to demand is interpreted as something that lowers

the price by 0.5. This ambiguity about the fundamental question being asked (what one

means by a one-unit shock to demand) interacts with uncertainty about the other parameters

to generate the huge tails for the estimated value of ψ12(1) (the top right panel of Figure 11).

We would opine that, even though the researcher�s maximum likelihood estimates correctly

characterize the true data-generating process, such empirical results could prove impossible

to publish.

The identiÞcation principle suggests that the way to get around the problems highlighted
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in Figure 9 is to take the β = γ axis as a boundary for the normalized parameter space rather

than have it cut through the middle. More generally, we seek a normalization for which

the matrix B0 in (10) becomes noninvertible only at the boundaries of the region. Let C

denote the Þrst two rows and columns of B0:

C =

 1 −β

1 −γ

 .
We thus seek a normalization for which C is singular only at the boundaries. One can see

what such a region looks like by assuming that C−1 exists and premultiplying (8) by C−1 0

00 1

 .
We then have 

1 0 π1

0 1 π2

0 0 1




qt

pt

wt

 = Π1yt−1 +Π2yt−2 +


v1t

v2t

v3t

 . (12)

Figure 12 plots likelihood contours for this parameterization as a function of π1, π2, and ρ, the

correlation between v1t and v2t.10 Although this is exactly the same sample of data displayed

in Figure 9, the likelihood function for this parameterization is perfectly well behaved, with

a unique mode near the population values of π1 = 0.4, π2 = −0.2, and ρ = −0.51. Indeed,

(12) will be recognized as the reduced-form representation for this structural model as in

Hamilton (1994, p. 245). The parameters all have clear interpretations and deÞnitions

in terms of basic observable properties of the data. The value of π1 tells us whether the

10 We set E(v2
1t) = 0.68 and E(v

2
2t) = 0.32, their population values.
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conditional expectation of qt goes up or down in response to more freezing weather, π2 does

the same for pt, and ρ tells us whether the residuals from these two regressions are positively

or negatively correlated. Ninety-Þve percent conÞdence intervals from the same 100,000

simulations described above are [0.00,0.71] for π1 and [-0.42,0.04] for π2.

Although this π-normalization eliminates the egregious problems associated with the β-

normalization in (10), it cannot be used to answer all the original questions of interest, such

as Þnding the value of the demand elasticity or the effects of a demand shock on price.

We can nevertheless use the π-normalization to get a little more insight into why we ran

into problems with the β-normalization. One can go from the π-normalization back to the

β-normalization by premultiplying (12) by C 0

00 1


to obtain 

1 −β π1 − βπ2

1 −γ π1 − γπ2

0 0 1




qt

pt

wt

 = B1yt−1 +B2yt−2 +

v1t − βv2t

v1t − γv2t

v3t

 . (13)

Comparing (13) with (11), the structural parameter β must be chosen so as to make the

(1,3) element of B0 zero, or

β = π1/π2. (14)

Given β, the parameter γ must be chosen so as to ensure E(v1t − βv2t)(v1t − γv2t) = 0, or

γ =
σ11 − βσ12
σ12 − βσ22
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for σij = E(vitvjt). The value of h is then obtained from the (2,3) element of B0 as

h = −(π1 − γπ2).

The problems with the posterior distribution for β can now be seen directly from (14).

The data allow a substantial possibility that π2 is zero or even positive, that is, that more

freezes actually result in a lower price of oranges. Assuming that more freezes mean a lower

quantity produced, if a freeze produces little change in price, the demand curve must be

quite steep, and if the price actually drops, the demand curve must be upward sloping (see

Figure 13). A steep demand curve thus implies either a large positive or a large negative

value for β, and when π2 = 0, we switch from calling β an inÞnite positive number to calling

it an inÞnite negative number. Clearly a point estimate and standard error for β are a poor

way to describe this inference about the demand curve. If π2 is in the neighborhood of zero,

it would be better to convey the apparent steepness of the demand curve by reparameterizing

(10) as

B0 =


−η 1 0

1 −γ −h

0 0 1

 (15)

and concluding that η may be near zero.

When we performed the analogous 100,000 simulations for the η-normalization (15),

the 95% conÞdence interval for η is [-1.88,0.45], a more convenient and accurate way to

summarize the basic fact that the demand curve is relatively steep, with elasticity β =

η−1 > −0.53 and possibly even vertical or positively sloped. The response of price to a
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demand shock for this normalization is plotted in the upper-right panel of Figure 10. The

bimodality of the distribution of ψ12(0) and enormous tails of ψ12(1) have both disappeared

(second row of Figure 11).

That such a dramatic improvement is possible from a simple renormalization may seem

surprising, since for any given value for the parameter vector θ, the impulse-response function

∂yj,t+k/∂u
∗
1t for the η-normalization is simply the constant β

−1 times the impulse-response

function ∂yj,t+k/∂u1t for the β-normalization. Indeed, we have utilized this fact in preparing

the upper right panel of Figure 10, multiplying each value of ∂y2,t+k/∂u∗1t by the constant

-0.5 before plotting the Þgure so as to get a value that corresponds to the identical concept

and scale as the one measured in the upper left panel of Figure 10. The difference between

this harmless rescaling (multiplying by the constant -0.5) and the issue of normalization

discussed in this paper is that the upper-left panel of Figure 10 is the result of multiplying

∂y2,t+k/∂u
∗
1t not by the constant -0.5 but rather by β

−1, which is a different magnitude for

each of the 100,000 draws. Even though ∂y2,t+k/∂u∗1t is reasonably well-behaved across these

draws, its product with β−1 is, as we see in the Þrst panel of Figure 10, all over the map.

Although the η-normalization would seem to offer a better way to summarize what the

data have to say about the slope of the demand curve and effects of shocks to it, it does

nothing about the fragility of the estimate of γ. Moreover, the particular approach followed

here of swapping β with η may be harder to recognize or generalize in more complicated

examples. It is thus of interest to see how our two automatic solutions for the normalization

problem work for this particular example.
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To discuss normalization more generally for a structural VAR, we premultiply (8) by D−1

and transpose,

y
0
tA0= c+ y

0
t−1A1 + y

0
t−2A2 + . . .+ y

0
t−pAp + ε

0
t (16)

where Aj= B
0
jD

−1 for j = 0, 1, . . . , p and εt = D−1ut so that E(εtε
0
t) = In. IdentiÞcation

is typically achieved by imposing zeros on A0. For the supply-demand example (11),

A0 =


a11 a12 0

a21 a22 0

0 a32 a33

 .

The normalization problem arises because, even though the model is identiÞed in the conven-

tional sense from these zero restrictions, multiplying any column ofAj by−1 for j = 0, 1, ..., p

results in the identical value for the likelihood function. For n = 3 as here, there are 8 differ-

ent values of A0 that work equally well. In any Bayesian or classical analysis that produces

a particular draw for A0 (for example, a single draw from the posterior distribution), we

have to choose which of these 8 possibilities to use in constructing our simulation of the

range of possible values for A0.

Let θ denote the unknown elements ofA0; for this example, θ = (a11, a12, a21, a22, a32, a33)0.

Waggoner and Zha (2003a) suggested that each simulated draw for θ should be chosen such

that the concentrated log likelihood L(θ) is Þnite for all θ = λ�θ + (1− λ)θ for �θ the MLE

and for all λ ∈ [0, 1]. This is implemented as follows. Let �ak denote the kth column of

A0(�θ). Let A0 denote a proposed candidate value for the matrix of contemporaneous coef-

Þcients, drawn from a simulation of the Bayesian posterior distribution. The Waggoner-Zha
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algorithm for deciding whether the candidate A0 satisÞes the normalization condition is to

check the sign of e
0
kA

−1
0 �ak, where ek denotes the kth column of In. If e

0
kA

−1
0 �ak > 0, the kth

column of A0 is determined to be correctly normalized. If e
0
kA

−1
0 �ak < 0, the kth column of

A0 is multiplied by −1.

When using this algorithm to calculate standard errors in a particular application, one

has a single observed sample and particular maximum likelihood estimate �θ from which the

normalization is to be determined. In attempting to evaluate the promise of this method

with a broader Monte Carlo investigation as here, in principle one has to take into account

the possible sampling distribution of �θ itself, though we have found that it does not seem

to make much difference how one handles this question in practice. As one way to design

the Monte Carlo study, we generated ten different samples, each of size T = 50, and found

the MLE for each sample. Of course, there are eight equivalent MLE�s for each of these 10

samples (corresponding to whether each of the three columns of �A0 is multiplied by ±1),

and for each sample we chose as its �MLE� the one of these eight for which k �θ − θ0 k was

smallest, where θ0 denotes the true values, i.e., the numbers from the left-most matrix in

(11). For each of these ten samples, we generated 100 different samples, and for each of

these 100 samples used the Waggoner-Zha normalization based on the root sample�s �A0. For

each sample, we calculated 100 draws from the posterior distribution, for a total of 100,000

parameter draws coming from 1000 different samples each of size T = 50.

The lower right panel of Figure 10 gives the impulse-response function ψ12(k) for this

Waggoner-Zha normalization along with 90% conÞdence intervals, while the third row of
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Figure 11 plots the densities of the Þrst two terms in this function. The results are basically

indistinguishable from those for the η-normalization.

The second automatic procedure we investigated is the Wald normalization. For the jth

parameter draw θ(j) as above (j = 1, ..., 100, 000), we calculated the 8 possible permutationsn
θ(j,m)

o8
m=1

, and calculated the 8 corresponding Wald test statistics,

Wjm =
³
θ(j,m)−�θi(j)

´0
�H
³
θ(j,m)−�θi(j)

´
for �H the matrix in (5) and �θ

i(j)
the MLE from the root sample i ∈ {1, ..., 10} associated

with draw j. The value θ(j) was then taken to be the element of the set
n
θ(j,m)

o8
m=1

for

which Wjm is smallest.

The lower left panel of Figure 10 gives the impulse-response function ψ12(k) for this Wald

normalization along with 90% conÞdence intervals, while the fourth row of Figure 11 plots

the densities of the Þrst two terms in this function. The results are again indistinguishable

from those for either the η-normalization or the Waggoner-Zha normalization.

To be sure, the ψ12(k) function is not estimated all that accurately in this example,

even for our preferred normalizations. This is a basic limitation of the data and model�

the identiÞcation here, though valid, is relatively weak. However, there is no reason to

compound the unavoidable problem of weak identiÞcation with a normalization that imposes

a pathological topography to the likelihood surface, as manifest in Figures 9 and 10(a).

Indeed, a suitable normalization is particularly imperative in such cases in order to come

away with a clear understanding of which features of the model the data are informative

about.
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5 Cointegration.

Yet another instance where normalization can be important is in analysis of cointegrated

systems. Consider

∆yt = k+BA
0yt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + εt

where yt is an (n × 1) vector of variables, A and B are (n × h) matrices of parameters,

and h < n is the number of cointegrating relations among the variables in yt. Such models

require normalization, since the likelihood function is unchanged if one replaces B by BH

and A0 by H−1A0 for H any nonsingular (h × h) matrix. Two popular normalizations are

to set the Þrst h rows and columns of A0 equal to Ih (the identity matrix of dimension

h) or to impose a length and orthogonality condition such as A0A = Ih. However, both

of these normalizations fail to satisfy the identiÞcation principle, because there exists an

interior point in the allowable parameter space (namely, any point for which some column

of B is the zero vector) at which the parameters of the corresponding row of A0 become

unidentiÞed.

For illustration, consider a sample of T = 50 observations from the following model:

∆y1t = ε1t

∆y2t = y1,t−1 − y2,t−1 + ε2t (17)

with εt ∼ N(0, I2). This is an example of the above error-correction system in which p = 1,

B = (0, b2)
0, A0 = (a1, a2), and true values of the parameters are b2 = 1, a1 = 1, and a2 = −1.

The top panel of Figure 14 shows the consequences of normalizing a1 = 1, displaying contours
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of the log likelihood as functions of a2 and b2. The global maximum occurs near the true

values. However, as b2 approaches zero, an iso-likelihood ellipse becomes inÞnitely wide in

the a2 dimension, reßecting the fact that a2 becomes unidentiÞed at this point. A similar

problem arises along the a1 dimension if one normalizes on a2 = 1 (second panel). By

contrast, the normalization b2 = 1 does satisfy the identiÞcation principle for this example,

and likelihood contours with respect to a1 and a2 (third panel) are well-behaved. This

preferred normalization accurately conveys both the questions about which the likelihood is

highly informative (namely, the fact that a1 is the opposite value of a2) and the questions

about which the likelihood is less informative (namely, the particular values of a1 or a2).

For this numerical example, the identiÞcation is fairly strong in the sense that, from

a classical perspective, the probability of encountering a sample for which the maximum

likelihood estimate is in the neighborhood of b2 = 0 is small, or from a Bayesian perspective,

the posterior probability that b2 is near zero is reasonably small. In such a case, the

normalization a1 = 1 or a2 = 1might not produce signiÞcant problems in practice. However,

if the identiÞcation is weaker, the problems from a poor normalization can be much more

severe. To illustrate this, we generated N = 10, 000 samples each of size T = 50 from this

model with b2 = 0.1, a1 = 1, and a2 = −1, choosing the values of a2 and b2 for each sample

so as to maximize the likelihood, given a1 = 1. Figure 15 plots kernel estimates of the

small-sample distribution of the maximum likelihood estimates �a2 and �b2. The distribution

for �a2 is extremely diffuse. Indeed, the MSE of �a2 appears to be inÞnite, with the average

value of (�a2+1)2 continuing to increase as we increased the number of Monte Carlo samples
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generated. The MSE is 208 when N = 10, 000, with the smallest value generated being -665

and the biggest value 446. By contrast, if we normalize on b2 = 0.1, the distributions of �a1

and �a2 are much better behaved (see Figure 16), with MSE�s around 0.8.11

One can understand why the normalization that satisÞes the identiÞcation principle (b2 =

0.1) results in much better behaved estimates for this example by examining the reduced

form of the model:

∆y1t = ε1t

∆y2t = π1y1,t−1 + π2y2,t−1 + ε2t. (18)

The reduced-form coefficients �π1 and �π2 are obtained by OLS regression of ∆y2t on the

lags of each variable. Under the normalization a1 = 1, the MLE �b2 is given by �π1 and

the MLE �a2 is �π2/�π1. Because there is a substantial probability of drawing a value of �π1

near zero, the small-sample distribution of �a2 is very badly behaved. By contrast, with the

identiÞcation principle normalization of b2 = b02, the MLE�s are �a1 = �π1/b
0
2 and �a2 = �π2/b

0
2.

These accurately reßect the uncertainty of the OLS estimates but do not introduce any new

difficulties as a result of the normalization itself.

We were able to implement the identiÞcation principle in a straightforward fashion for

this example because we assumed that we knew a priori that the true value of b1 is zero.

11 Of course, normalizing b2 = 1 (as one would presumably do in practice, not knowing the true b02) would
simply result in a scalar multiple of these distributions. We have normalized here on the true value (b2 = 0.1)
in order to keep the scales the same when comparing parameter estimates under alternative normalization
schemes.
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Consider next the case where the value of b1 is also unknown: ∆y1t
∆y2t

 =
 b1
b2

 · a1 a2

¸ y1,t−1
y2,t−1

+
 ε1t
ε2t

 . (19)

For this model, the normalization, b2 = b02 no longer satisÞes the identiÞcation principle, be-

cause the allowable parameter space includes a1 = a2 = 0, at which point b1 is unidentiÞed.

As in the previous section, one strategy for dealing with this case is to turn to the reduced

form,

∆yt = Πyt−1 + εt (20)

where cointegration restricts Π to have unit rank. The algorithm for such estimation is

described in Appendix C. Notice that this normalization satisÞes the identiÞcation principle:

the representation is locally identiÞed at all points in the allowable parameter space We

generated 10,000 samples from the model with b1 = 0, b2 = 0.1, a1 = 1, a2 = −1 and

calculated the maximum likelihood estimate of Π for each sample subject to restriction

that Π has rank one. The resulting small-sample distributions are plotted in Figure 17.

Note that, as expected, the parameter estimates are individually well-behaved and centered

around the true values.

One suggestion is that the researcher simply report results in terms of thisΠ-normalization.

For example, if our data set were the Þrst of these 10,000 samples, then the maximum like-

lihood estimate of Π, with small-sample standard errors as calculated across the 10,000
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simulated samples, is

�Π =


0.049
(0.079)

−0.0521
(0.078)

0.140
(0.078)

−0.147
(0.085)

 .
The estimated cointegrating vector could be represented identically by either row of this

matrix; for example, the maximum likelihood estimates imply that

0.140
(0.078)

y1t − 0.147
(0.085)

y2t ∼ I(0) (21)

or that the cointegrating vector is (1,−1.05)0. Although (0.140,−0.147)0 and (1,−1.05)0

represent the identical cointegrating vector, the former is measured in units that have an

objective deÞnition, namely, 0.140 is the amount by which one would change one�s forecast

of y2,t+1 as a result of a one-unit change of y1t, and the implied t-statistic 0.140/0.078 is a

test of the null hypothesis that this forecast would not change at all.12 By contrast, if the

parameter of interest is deÞned to be the second coefficient a2 in the cointegrating vector

normalized as (1, a2)0, the magnitude a2 is inherently less straightforward to estimate and

a true small-sample conÞdence set for this number can be quite wild, even though one has

some pretty good information about the nature of the cointegrating vector itself.

Any hypothesis about the cointegrating vector can be translated into a hypothesis about

Π, the latter having the advantage that the small-sample distribution of �Π is much better

behaved than are the distributions of transformations of �Π that are used in other nor-

malizations. For example, in an n-variable system, one would test the null hypothesis

12 Obviously these units are preferred to those that measure the effect of y1t on the forecast of y1,t+1,
which effect is in fact zero in the population for this example, and a t-test of the hypothesis that it equals
zero would produce a much smaller test statistic.
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that the Þrst variable does not appear in the cointegrating vector through the hypothesis

π11 = π21 = · · · = πn1 = 0, for which a small-sample Wald test could be constructed from the

sample covariance matrix of the �Π estimates across simulated samples. One could further

use the Π-normalization to describe most other magnitudes of interest, such as calculating

forecasts E(yt+j|yt,yt−1, ...,Π) and the fraction of the forecast MSE for any horizon at-

tributable to shocks that are within the null space of Π, from which we could measure the

importance of transitory versus permanent shocks at alternative forecast horizons.

6 Conclusions and recommendations for applied re-
search.

This paper described some of the pitfalls that can arise in describing the small-sample

distributions of parameters in a wide variety of econometric models where one has imposed

a seemingly innocuous normalization. We have called attention in such settings to the

loci in the parameter space along which the model is locally unidentiÞed, across which the

interpretation of parameters necessarily changes. The problems arise whenever one mixes

together parameter values across these boundaries as if they were part of a single conÞdence

set.

Assuming that the true parameter values do not fall exactly on such a locus, this is

strictly a small-sample problem. Asymptotically, the sampling distribution of the MLE

in a classical setting, or the posterior distribution of parameters in a Bayesian setting, will

have negligible probability mass in the vicinity of a troublesome locus. The small-sample

problem that we have highlighted in this paper could be described as the potential for a
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poor normalization to confound the inference problems that arise when the identiÞcation is

relatively weak, i.e., when there is signiÞcant probability mass near an unidentiÞed locus.

The ideal solution to this problem is to use these loci themselves to choose a normaliza-

tion, deÞning the boundaries of the allowable parameter space to be the loci along which

the model is locally unidentiÞed. The practical way to check whether one has accomplished

this goal with a given normalization is to make sure that the model is locally identiÞed at

all interior points in the parameter space.

Where this solution is impossible, we offer another practical guideline that provides an

approximate way to do the same thing. Given a set of observationally equivalent parameter

values (θ(i)1 ,θ
(i)
2 , . . . ,θ

(i)
M ) that are generated from the jth simulated sample, choose the one

that would be associated with the smallest Wald statistic for testing H0 : θ(i)m = �θMLE.

For researchers who resist both of these suggestions, four other practical pieces of advice

emerge from the examples investigated here. First, if one believes that normalization has

made no difference in a given application, it can not hurt to try several different normaliza-

tions to make sure that that is indeed so. Second, it in any case seems good practice to plot

the small-sample distributions of parameters of interest rather than simply report the mean

and standard deviation. Bimodal distributions like those in Figure 3 or Figure 11 can be the

Þrst clue that the researcher�s conÞdence regions are mixing together apples and oranges.

Third, in Bayesian analysis, one should check whether the normalization imposed alters the

information content of the prior. Finally, any researcher would do well to understand how

reduced-form parameters (which typically have none of these normalization issues) are being
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mapped into structural parameters of interest by the normalization imposed. Such a habit

can help avoid not just the problems highlighted in this paper, but should be beneÞcial in a

number of other dimensions as well.
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Appendix A

Benchmark simulations.

Our Bayesian simulations for the i.i.d. mixture example were based on the following

prior. Let p1 = p and p2 = 1− p, for which we adopt the Beta prior

π(p1, p2) ∝ pα1−1
1 pα2−1

2 , (22)

deÞned over p1, p2 ∈ [0, 1] with p1 + p2 = 1. Our simulations set α1 = α2 = 1 (a uniform

prior for p). For µ1 and µ2 we used

π(µ1, µ2) = ϕ


µ̄1
µ̄2

 ,
ς21 0

0 ς22


 , (23)

where ϕ(x,Ω) denotes the normal pdf with mean x and covariance matrix Ω and the re-

strictions µ1 = µ2 and ς1 = ς2 are used in the text.

Denote

y = (y1, . . . , yT )
0, θ = (µ1, µ2, p1, p2)

0, s = (s1, . . . , sT )
0

Monte Carlo draws of θ from the marginal posterior distribution π(θ|y) can be obtained

from simulating samples of θ and s with the following two full conditional distributions via

Gibbs sampling:

π(s | y,θ), π(θ | y, s).

It follows from the i.i.d. structure that

π(s | y,θ) =
TY
t=1

π(st | yt,θ),
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where

π(st | yt,θ) = π(yt | st,θ)π(st | θ)P2
st=1

π(yt | st,θ) π(st | θ)
, (24)

with

π(yt | st,θ) = 1√
2π
exp

½
−(yt − µst

)2

2

¾
,

π(st | θ) =


p1 st = 1

p2 st = 2

,

p1 + p2 = 1.

For the second conditional posterior distribution, we have

π(θ | y, s) = π(µ1, µ2 | y, s, p1, p2) π(p1, p2 | y, s).

Combining the prior speciÞed in (22) and (23) with the likelihood function leads to

π(p1, p2 | y, s) = π(p1, p2 | s)

∝ π(s | p1, p2) π(p1, p2)

∝ pT1+α1−1
1 pT2+α2−1

2 ,

(25)

π(µ1, µ2 | y, s, p1, p2) ∝ π(y | s, p1, p2, µ1, µ2) π(µ1, µ2)

= ϕ


�µ1
�µ2

 ,


ς2
1

ς2
1T1+1

0

0
ς2

2

ς2
2T2+1


 , (26)

where Tk is the number of observations in state k for k = 1, 2 so that T1 + T2 = T and

�µk =
ς2k
Pk(Tk)

t=k(1) yt + µ̄k

ς2kTk + 1
, sk(q) = k for q = 1, . . . , Tk, k = 1, 2.
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The posterior density (25) is of Beta form and (26) is of Gaussian form; thus, sampling from

these distributions is straightforward.

Truncated Gaussian prior.

The truncated Gaussian prior used in the text has the form:

π(µ1, µ2) = π(µ1)π(µ2|µ1), (27)

where π(µ2|µ1) is given by (7). Replacing the symmetric prior (23) with the truncated prior

(27) leads to the following posterior pdf of µ1 and µ2:

π(µ1, µ2 | y, s, p1, p2) =
1

Φ
³
µ1−µ̄2

ς2

´ϕ

�µ1
�µ2

 ,


ς2
1

ς2
1T1+1

0

0
ς2

2

ς2
2T2+1


 (28)

if µ2 ≤ µ1 and zero otherwise.

Because µ̄2 6= �µ2 and ς2 6= ς2
2

ς2
2T2+1

, the conditional posterior pdf (28) is not of any standard

form. To sample from (28), we use a Metropolis algorithm (e.g., Chib and Greenberg, 1996)

with the transition pdf of µ0 conditional on the jth draw µ(j) given by

q(µ(j), µ0 | y, s, p1, p2) = ϕ


µ

(j)
1

µ
(j)
2

 , c


ς2
1

ς2
1T1+1

0

0
ς2

2

ς2
2T2+1


 , (29)

where c is a scaling factor to be adjusted to maintain an optimal acceptance ratio (e.g.,

between 25% to 40%). Given the previous posterior draw µ(j), the algorithm sets µ(j+1) = µ0

with acceptance probability13

13 Note from (29) that q(µ, µ0) = q(µ0, µ), allowing us to use the Metropolis as opposed to the Metropolis-
Hastings algorithm.
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min
½
1,
π(µ0 | y, s, p1, p2)
π(µ(j) | y, s, p1, p2)

¾
if µ02 < µ

0
1;

otherwise, the algorithm sets µ(j+1) = µ(j). 14

14 If the random value µ∗1 = µ01 generated from q(µ(j), µ0 | y, s, p1, p2) or µ∗1 = µ
(j)
1 results in a numerical

underßow when Φ
³
µ∗1−µ̄2

ς2

´
is calculated, we could always set µ(j+1) = µ0 as an approximation to a draw

from the Metropolis algorithm. In our simulations, however, such an instance did not occur.
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Appendix B

All simulations were done using the Gibbs sampler for structural VARs described in Wag-

goner and Zha (2003b). This technique samples from the posterior distribution associated

with the speciÞcation given by (16). A ßat prior was used to obtain draws of A0,A1, · · ·Ap

and then these parameters were transformed into the other speciÞcations used in this paper.

Because these transformations are non-linear, the Jacobian is non-trivial and the resulting

draws for the alternate speciÞcations will have diffuse, as opposed to ßat, priors. In the case

of the β and η normalizations, the likelihood is not proper15 , so the posterior will not be

proper unless some sort of prior is imposed. A direct computation reveals that the Jacobian

involves only the variance terms and it tends to favor smaller values for the variance. The

prior on the parameters of interest γ, h, and β or η will be ßat. The likelihood for the

π-normalization is proper and so in theory one could impose the ßat prior for this case.

Though the Jacobian in this case is difficult to interpret, we note that the π-normalization is

similar to the reduced form speciÞcation. The technique used in this paper, applied to the

reduced form speciÞcation, would be equivalent to using a ßat prior on the reduced form,

but with the sample size increased.

15 See Sims and Zha 1994 for a discussion of this result.
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Appendix C

Maximum likelihood estimation of (20) can be found using Johansen�s (1988) procedure,

as described in Hamilton (1994, p. 637). SpeciÞcally, let �Σvv = T
−1PT

t=1 yt−1y
0
t−1, �Σuu =

T−1
PT

t=1∆yt∆y
0
t, �Σuv = T

−1PT
t=1∆yty

0
t−1, and �P = �Σ

−1
vv
�Σ

0
uv
�Σ−1uu

�Σuv. Find �a1, the eigen-

vector of �P associated with the biggest eigenvector and construct �a1 = �a1/
q
�a

0
1
�Σvv�a1. The

MLE is then �Π = �Σuv�a1�a
0
1.
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Figure Captions

Figure 1. Log likelihood for an i.i.d. N(0, σ2)sample of T = 50 observations as a function

of σ.

Figure 2. Contours of log likelihood for an i.i.d. Gaussian mixture of T = 50 observations.

True values: µ1 = 1, µ2 = −1, p = 1.

Figure 3. Posterior densities for i.i.d. mixture normalized according to p > 0.5.

Figure 4. Posterior densities for i.i.d. mixture normalized according to µ1 > µ2.

Figure 5. Posterior densities for i.i.d. mixture under Wald normalization.

Figure 6. Average squared difference between posterior mean and true value under three

different normalizations as a function of sample size T .

Figure 7. Ninety-percent coverage probabilities under three different normalizations as a

function of sample size T .

Figure 8. Mean squared errors under normalization µ1 > µ2 for three different priors as

a function of sample size T .

Figure 9. Contours of concentrated log likelihood of structural VAR under the β-

normalization.

Figure 10. Impulse-response function and 90% conÞdence interval for the effect of a

one-unit increase in quantity demanded on the price k periods later under four different

normalizations.

Figure 11. Posterior densities for the k = 0 and k = 1 values of the impulse-response

functions plotted in Figure 10.
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Figure 12. Contours of concentrated log likelihood of structural VAR under the π-

normalization.

Figure 13. Effect of freezing weather when the demand curve is steep.

Figure 14. Contours of log likelihood for cointegrated system under three different nor-

malizations.

Figure 15. Sampling densities of maximum likelihood estimates �a2 and �b2 for a cointe-

grated system under the normalization a1 = 1.

Figure 16. Sampling densities of maximum likelihood estimates �a1 and �a2 for a cointe-

grated system under the normalization b2 = 0.1.

Figure 17. Sampling densities of maximum likelihood estimates of elements of the Π

matrix in equation (20).
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